Advertisement
Review Article| Volume 34, ISSUE 4, P785-796, November 2014

Obesity, Metabolic Syndrome, and Airway Disease

A Bioenergetic Problem?
  • Anurag Agrawal
    Correspondence
    Corresponding authors. #615, CSIR Institute of Genomics and Integrative Biology, Mall Road, Delhi University, Delhi 110007, India
    Affiliations
    Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
    Search for articles by this author
  • Y.S. Prakash
    Correspondence
    Corresponding authors. #615, CSIR Institute of Genomics and Integrative Biology, Mall Road, Delhi University, Delhi 110007, India
    Affiliations
    Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA

    Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
    Search for articles by this author
Published:August 21, 2014DOI:https://doi.org/10.1016/j.iac.2014.07.004

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Immunology and Allergy Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kent B.D.
        • Lane S.J.
        Twin epidemics: asthma and obesity.
        Int Arch Allergy Immunol. 2012; 157: 213-214
        • Brisbon N.
        • Plumb J.
        • Brawer R.
        • et al.
        The asthma and obesity epidemics: the role played by the built environment–a public health perspective.
        J Allergy Clin Immunol. 2005; 115: 1024-1028
        • Beuther D.A.
        Recent insight into obesity and asthma.
        Curr Opin Pulm Med. 2010; 16: 64-70
        • Farzan S.
        The asthma phenotype in the obese: distinct or otherwise?.
        J Allergy (Cairo). 2013; 2013: 602908
        • Agrawal A.
        • Sood A.
        • Linneberg A.
        • et al.
        Mechanistic understanding of the effect of obesity on asthma and allergy.
        J Allergy (Cairo). 2013; 2013: 598904
        • Agrawal A.
        • Mabalirajan U.
        • Ahmad T.
        • et al.
        Emerging interface between metabolic syndrome and asthma.
        Am J Respir Cell Mol Biol. 2011; 44: 270-275
        • Ahmad T.
        • Mukherjee S.
        • Pattnaik B.
        • et al.
        Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy.
        EMBO J. 2014; 33: 994-1010
        • Hill B.G.
        • Benavides G.A.
        • Lancaster Jr., J.R.
        • et al.
        Integration of cellular bioenergetics with mitochondrial quality control and autophagy.
        Biol Chem. 2012; 393: 1485-1512
        • Aravamudan B.
        • Thompson M.A.
        • Pabelick C.M.
        • et al.
        Mitochondria in lung diseases.
        Expert Rev Respir Med. 2013; 7: 631-646
        • Lee H.K.
        • Park K.S.
        • Cho Y.M.
        • et al.
        Mitochondria-based model for fetal origin of adult disease and insulin resistance.
        Ann N Y Acad Sci. 2005; 1042: 1-18
        • Irving B.A.
        • Nair K.S.
        Aging and diabetes: mitochondrial dysfunction.
        Curr Diab Rep. 2007; 7: 249-251
        • Vernochet C.
        • Kahn C.R.
        Mitochondria, obesity and aging.
        Aging (Albany NY). 2012; 4: 859-860
        • Martin S.D.
        • McGee S.L.
        The role of mitochondria in the aetiology of insulin resistance and type 2 diabetes.
        Biochim Biophys Acta. 2014; 1840: 1303-1312
        • Aravamudan B.
        • Kiel A.
        • Freeman M.
        • et al.
        Cigarette smoke-induced mitochondrial fragmentation and dysfunction in human airway smooth muscle.
        Am J Physiol Lung Cell Mol Physiol. 2014; 306: L840-L854
        • Naviaux R.K.
        Metabolic features of the cell danger response.
        Mitochondrion. 2013; 16: 7-17
        • Mabalirajan U.
        • Ghosh B.
        Mitochondrial dysfunction in metabolic syndrome and asthma.
        J Allergy (Cairo). 2013; 2013: 340476
        • Farid S.
        • Mirshafiey A.
        • Razavi A.
        Siglec-8 and Siglec-F, the new therapeutic targets in asthma.
        Immunopharmacol Immunotoxicol. 2012; 34: 721-726
        • Roscioli E.
        • Hamon R.
        • Ruffin R.E.
        • et al.
        Cellular inhibitor of apoptosis-2 is a critical regulator of apoptosis in airway epithelial cells treated with asthma-related inflammatory cytokines.
        Physiol Rep. 2013; 1: e00123
        • Cheng Z.
        • Ristow M.
        Mitochondria and metabolic homeostasis.
        Antioxid Redox Signal. 2013; 19: 240-242
        • Lanza I.R.
        • Short D.K.
        • Short K.R.
        • et al.
        Endurance exercise as a countermeasure for aging.
        Diabetes. 2008; 57: 2933-2942
        • Jelenik T.
        • Roden M.
        Mitochondrial plasticity in obesity and diabetes mellitus.
        Antioxid Redox Signal. 2013; 19: 258-268
        • Martin-Montalvo A.
        • de Cabo R.
        Mitochondrial metabolic reprogramming induced by calorie restriction.
        Antioxid Redox Signal. 2013; 19: 310-320
        • Cheng Z.
        • Almeida F.A.
        Mitochondrial alteration in type 2 diabetes and obesity: an epigenetic link.
        Cell Cycle. 2014; 13: 890-897
        • Hancock C.R.
        • Han D.H.
        • Chen M.
        • et al.
        High-fat diets cause insulin resistance despite an increase in muscle mitochondria.
        Proc Natl Acad Sci U S A. 2008; 105: 7815-7820
        • Watt M.J.
        • Hevener A.L.
        Fluxing the mitochondria to insulin resistance.
        Cell Metab. 2008; 7: 5-6
        • Singh S.
        • Prakash Y.S.
        • Linneberg A.
        • et al.
        Insulin and the lung: connecting asthma and metabolic syndrome.
        J Allergy (Cairo). 2013; 2013: 627384
        • Nie Z.
        • Jacoby D.B.
        • Fryer A.D.
        Hyperinsulinemia potentiates airway responsiveness to parasympathetic nerve stimulation in obese rats.
        Am J Respir Cell Mol Biol. 2014; 51: 251-261
        • Palmieri V.O.
        • De Rasmo D.
        • Signorile A.
        • et al.
        T16189C mitochondrial DNA variant is associated with metabolic syndrome in Caucasian subjects.
        Nutrition. 2011; 27: 773-777
        • Gemma C.
        • Sookoian S.
        • Dieuzeide G.
        • et al.
        Methylation of TFAM gene promoter in peripheral white blood cells is associated with insulin resistance in adolescents.
        Mol Genet Metab. 2010; 100: 83-87
        • Gianotti T.F.
        • Sookoian S.
        • Dieuzeide G.
        • et al.
        A decreased mitochondrial DNA content is related to insulin resistance in adolescents.
        Obesity (Silver Spring). 2008; 16: 1591-1595
        • Konradova V.
        • Copova C.
        • Sukova B.
        • et al.
        Ultrastructure of the bronchial epithelium in three children with asthma.
        Pediatr Pulmonol. 1985; 1: 182-187
        • Mabalirajan U.
        • Dinda A.K.
        • Kumar S.
        • et al.
        Mitochondrial structural changes and dysfunction are associated with experimental allergic asthma.
        J Immunol. 2008; 181: 3540-3548
        • Mabalirajan U.
        • Rehman R.
        • Ahmad T.
        • et al.
        12/15-lipoxygenase expressed in non-epithelial cells causes airway epithelial injury in asthma.
        Sci Rep. 2013; 3: 1540
        • Rehman R.
        • Bhat Y.A.
        • Panda L.
        • et al.
        TRPV1 inhibition attenuates IL-13 mediated asthma features in mice by reducing airway epithelial injury.
        Int Immunopharmacol. 2013; 15: 597-605
        • Mabalirajan U.
        • Rehman R.
        • Ahmad T.
        • et al.
        Linoleic acid metabolite drives severe asthma by causing airway epithelial injury.
        Sci Rep. 2013; 3: 1349
        • Mabalirajan U.
        • Ahmad T.
        • Leishangthem G.D.
        • et al.
        L-arginine reduces mitochondrial dysfunction and airway injury in murine allergic airway inflammation.
        Int Immunopharmacol. 2010; 10: 1514-1519
        • Ahmad T.
        • Mabalirajan U.
        • Ghosh B.
        • et al.
        Altered asymmetric dimethyl arginine metabolism in allergically inflamed mouse lungs.
        Am J Respir Cell Mol Biol. 2010; 42: 3-8
        • Aguilera-Aguirre L.
        • Bacsi A.
        • Saavedra-Molina A.
        • et al.
        Mitochondrial dysfunction increases allergic airway inflammation.
        J Immunol. 2009; 183: 5379-5387
        • Flaquer A.
        • Heinzmann A.
        • Rospleszcz S.
        • et al.
        Association study of mitochondrial genetic polymorphisms in asthmatic children.
        Mitochondrion. 2014; 14: 49-53
        • Litonjua A.A.
        • Carey V.J.
        • Burge H.A.
        • et al.
        Parental history and the risk for childhood asthma. Does mother confer more risk than father?.
        Am J Respir Crit Care Med. 1998; 158: 176-181
        • Schauberger E.M.
        • Ewart S.L.
        • Arshad S.H.
        • et al.
        Identification of ATPAF1 as a novel candidate gene for asthma in children.
        J Allergy Clin Immunol. 2011; 128: 753-760.e11
        • Zifa E.
        • Daniil Z.
        • Skoumi E.
        • et al.
        Mitochondrial genetic background plays a role in increasing risk to asthma.
        Mol Biol Rep. 2012; 39: 4697-4708
        • Ahmad T.
        • Aggarwal K.
        • Pattnaik B.
        • et al.
        Computational classification of mitochondrial shapes reflects stress and redox state.
        Cell Death Dis. 2013; 4: e461
        • Leishangthem G.D.
        • Mabalirajan U.
        • Singh V.P.
        • et al.
        Ultrastructural changes of airway in murine models of allergy and diet-induced metabolic syndrome.
        ISRN Allergy. 2013; 2013: 261297
        • Agarwal A.R.
        • Yin F.
        • Cadenas E.
        Short-term cigarette smoke exposure leads to metabolic alterations in lung alveolar cells.
        Am J Respir Cell Mol Biol. 2014; 51: 284-293
        • Hoffmann R.F.
        • Zarrintan S.
        • Brandenburg S.M.
        • et al.
        Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells.
        Respir Res. 2013; 14: 97
        • Puente-Maestu L.
        • Perez-Parra J.
        • Godoy R.
        • et al.
        Abnormal transition pore kinetics and cytochrome C release in muscle mitochondria of patients with chronic obstructive pulmonary disease.
        Am J Respir Cell Mol Biol. 2009; 40: 746-750
        • Ito K.
        • Colley T.
        • Mercado N.
        Geroprotectors as a novel therapeutic strategy for COPD, an accelerating aging disease.
        Int J Chron Obstruct Pulmon Dis. 2012; 7: 641-652
        • Ito K.
        • Barnes P.J.
        COPD as a disease of accelerated lung aging.
        Chest. 2009; 135: 173-180
        • MacNee W.
        Accelerated lung aging: a novel pathogenic mechanism of chronic obstructive pulmonary disease (COPD).
        Biochem Soc Trans. 2009; 37: 819-823
        • Hoeks J.
        • Schrauwen P.
        Muscle mitochondria and insulin resistance: a human perspective.
        Trends Endocrinol Metab. 2012; 23: 444-450
        • Lanza I.R.
        • Nair K.S.
        Muscle mitochondrial changes with aging and exercise.
        Am J Clin Nutr. 2009; 89: 467S-471S
        • Martin-Montalvo A.
        • Mercken E.M.
        • Mitchell S.J.
        • et al.
        Metformin improves healthspan and lifespan in mice.
        Nat Commun. 2013; 4: 2192
        • Golay A.
        Metformin and body weight.
        Int J Obes (Lond). 2008; 32: 61-72
        • Calixto M.C.
        • Lintomen L.
        • Andre D.M.
        • et al.
        Metformin attenuates the exacerbation of the allergic eosinophilic inflammation in high fat-diet-induced obesity in mice.
        PLoS One. 2013; 8: e76786
        • Park C.S.
        • Bang B.R.
        • Kwon H.S.
        • et al.
        Metformin reduces airway inflammation and remodeling via activation of AMP-activated protein kinase.
        Biochem Pharmacol. 2012; 84: 1660-1670
        • Shore S.A.
        • Williams E.S.
        • Zhu M.
        No effect of metformin on the innate airway hyperresponsiveness and increased responses to ozone observed in obese mice.
        J Appl Physiol (1985). 2008; 105: 1127-1133
        • Mabalirajan U.
        • Ahmad T.
        • Leishangthem G.D.
        • et al.
        Beneficial effects of high dose of L-arginine on airway hyperresponsiveness and airway inflammation in a murine model of asthma.
        J Allergy Clin Immunol. 2010; 125: 626-635
        • Mabalirajan U.
        • Aich J.
        • Agrawal A.
        • et al.
        Mepacrine inhibits subepithelial fibrosis by reducing the expression of arginase and TGF-beta1 in an extended subacute mouse model of allergic asthma.
        Am J Physiol Lung Cell Mol Physiol. 2009; 297: L411-L419
        • Ahmad T.
        • Mabalirajan U.
        • Sharma A.
        • et al.
        Simvastatin improves epithelial dysfunction and airway hyperresponsiveness: from ADMA to asthma.
        Am J Respir Cell Mol Biol. 2010; 44: 531-539
        • Mabalirajan U.
        • Ahmad T.
        • Rehman R.
        • et al.
        Baicalein reduces airway injury in allergen and IL-13 induced airway inflammation.
        PLoS One. 2013; 8: e62916
        • Aich J.
        • Mabalirajan U.
        • Ahmad T.
        • et al.
        Resveratrol attenuates experimental allergic asthma in mice by restoring inositol polyphosphate 4 phosphatase (INPP4A).
        Int Immunopharmacol. 2012; 14: 438-443
        • Mabalirajan U.
        • Aich J.
        • Leishangthem G.D.
        • et al.
        Effects of vitamin E on mitochondrial dysfunction and asthma features in an experimental allergic murine model.
        J Appl Physiol (1985). 2009; 107: 1285-1292
        • Mabalirajan U.
        • Dinda A.K.
        • Sharma S.K.
        • et al.
        Esculetin restores mitochondrial dysfunction and reduces allergic asthma features in experimental murine model.
        J Immunol. 2009; 183: 2059-2067
        • Madmani M.E.
        • Solaiman A.Y.
        • Tamr Agha K.
        • et al.
        Coenzyme Q10 for heart failure.
        Cochrane Database Syst Rev. 2013; (CD008684)
        • Gazdik F.
        • Gvozdjakova A.
        • Horvathova M.
        • et al.
        Levels of coenzyme Q10 in asthmatics.
        Bratisl Lek Listy. 2002; 103: 353-356
        • Gvozdjakova A.
        • Kucharska J.
        • Bartkovjakova M.
        • et al.
        Coenzyme Q10 supplementation reduces corticosteroids dosage in patients with bronchial asthma.
        Biofactors. 2005; 25: 235-240
        • Littarru G.P.
        • Tiano L.
        Clinical aspects of coenzyme Q10: an update.
        Nutrition. 2010; 26: 250-254
        • Gomez-Cabrera M.C.
        • Domenech E.
        • Romagnoli M.
        • et al.
        Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance.
        Am J Clin Nutr. 2008; 87: 142-149
        • Armstrong J.S.
        Mitochondria-directed therapeutics.
        Antioxid Redox Signal. 2008; 10: 575-578
        • Barbi J.
        • Pardoll D.
        • Pan F.
        Metabolic control of the Treg/Th17 axis.
        Immunol Rev. 2013; 252: 52-77
        • Cottrell L.
        • Neal W.A.
        • Ice C.
        • et al.
        Metabolic abnormalities in children with asthma.
        Am J Respir Crit Care Med. 2011; 183: 441-448
        • Islam M.N.
        • Das S.R.
        • Emin M.T.
        • et al.
        Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury.
        Nat Med. 2012; 18: 759-765