Autoimmune Disease in Primary Immunodeficiency

At the Crossroads of Anti-Infective Immunity and Self-Tolerance
Published:September 05, 2015DOI:https://doi.org/10.1016/j.iac.2015.07.007

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      PDF Download and 24 Hours Online Access
      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.
      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Immunology and Allergy Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ozen S.
        • Bilginer Y.
        A clinical guide to autoinflammatory diseases: familial Mediterranean fever and next-of-kin.
        Nat Rev Rheumatol. 2014; 10: 135-147
        • Klein L.
        • Kyewski B.
        • Allen P.M.
        • et al.
        Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see).
        Nat Rev Immunol. 2014; 14: 377-391
        • Anderson M.S.
        • Venanzi E.S.
        • Klein L.
        • et al.
        Projection of an immunological self shadow within the thymus by the AIRE protein.
        Science. 2002; 298: 1395-1401
        • Zumer K.
        • Saksela K.
        • Peterlin B.M.
        The mechanism of tissue-restricted antigen gene expression by AIRE.
        J Immunol. 2013; 190: 2479-2482
        • Nagamine K.
        • Peterson P.
        • Scott H.S.
        • et al.
        Positional cloning of the APECED gene.
        Nat Genet. 1997; 17: 393-398
        • De Martino L.
        • Capalbo D.
        • Improda N.
        • et al.
        APECED: a paradigm of complex interactions between genetic background and susceptibility factors.
        Front Immunol. 2013; 4: 331
        • Puel A.
        • Doffinger R.
        • Natividad A.
        • et al.
        Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I.
        J Exp Med. 2010; 207: 291-297
        • Su M.A.
        • Anderson M.S.
        AIRE: an update.
        Curr Opin Immunol. 2004; 16: 746-752
        • Zuklys S.
        • Balciunaite G.
        • Agarwal A.
        • et al.
        Normal thymic architecture and negative selection are associated with AIRE expression, the gene defective in the autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED).
        J Immunol. 2000; 165: 1976-1983
        • Cavadini P.
        • Vermi W.
        • Facchetti F.
        • et al.
        AIRE deficiency in thymus of 2 patients with Omenn syndrome.
        J Clin Invest. 2005; 115: 728-732
        • Capalbo D.
        • Giardino G.
        • Martino L.D.
        • et al.
        Genetic basis of altered central tolerance and autoimmune diseases: a lesson from AIRE mutations.
        Int Rev Immunol. 2012; 31: 344-362
        • Jawad A.F.
        • McDonald-Mcginn D.M.
        • Zackai E.
        • et al.
        Immunologic features of chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome).
        J Pediatr. 2001; 139: 715-723
        • Gennery A.R.
        • Barge D.
        • O'Sullivan J.J.
        • et al.
        Antibody deficiency and autoimmunity in 22q11.2 deletion syndrome.
        Arch Dis Child. 2002; 86: 422-425
        • Ferrando-Martinez S.
        • Lorente R.
        • Gurbindo D.
        • et al.
        Low thymic output, peripheral homeostasis deregulation, and hastened regulatory T cells differentiation in children with 22q11.2 deletion syndrome.
        J Pediatr. 2014; 164: 882-889
        • Siggs O.M.
        • Miosge L.A.
        • Yates A.L.
        • et al.
        Opposing functions of the T cell receptor kinase ZAP-70 in immunity and tolerance differentially titrate in response to nucleotide substitutions.
        Immunity. 2007; 27: 912-926
        • Kim K.D.
        • Srikanth S.
        • Yee M.K.
        • et al.
        ORAI1 deficiency impairs activated T cell death and enhances T cell survival.
        J Immunol. 2011; 187: 3620-3630
        • McCarl C.A.
        • Picard C.
        • Khalil S.
        • et al.
        ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia.
        J Allergy Clin Immunol. 2009; 124: 1311-1318.e17
        • Picard C.
        • McCarl C.A.
        • Papolos A.
        • et al.
        STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity.
        N Engl J Med. 2009; 360: 1971-1980
        • Oh-Hora M.
        • Yamashita M.
        • Hogan P.G.
        • et al.
        Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance.
        Nat Immunol. 2008; 9: 432-443
        • Lenardo M.
        • Chan K.M.
        • Hornung F.
        • et al.
        Mature T lymphocyte apoptosis–immune regulation in a dynamic and unpredictable antigenic environment.
        Annu Rev Immunol. 1999; 17: 221-253
        • Watanabe-Fukunaga R.
        • Brannan C.I.
        • Copeland N.G.
        • et al.
        Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis.
        Nature. 1992; 356: 314-317
        • Wilson N.S.
        • Dixit V.
        • Ashkenazi A.
        Death receptor signal transducers: nodes of coordination in immune signaling networks.
        Nat Immunol. 2009; 10: 348-355
        • Oliveira J.B.
        The expanding spectrum of the autoimmune lymphoproliferative syndromes.
        Curr Opin Pediatr. 2013; 25: 722-729
        • Del-Rey M.
        • Ruiz-Contreras J.
        • Bosque A.
        • et al.
        A homozygous Fas ligand gene mutation in a patient causes a new type of autoimmune lymphoproliferative syndrome.
        Blood. 2006; 108: 1306-1312
        • Wang J.
        • Zheng L.
        • Lobito A.
        • et al.
        Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II.
        Cell. 1999; 98: 47-58
        • Chun H.J.
        • Zheng L.
        • Ahmad M.
        • et al.
        Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency.
        Nature. 2002; 419: 395-399
        • Bolze A.
        • Byun M.
        • McDonald D.
        • et al.
        Whole-exome-sequencing-based discovery of human FADD deficiency.
        Am J Hum Genet. 2010; 87: 873-881
        • Kuehn H.S.
        • Niemela J.E.
        • Rangel-Santos A.
        • et al.
        Loss-of-function of the protein kinase C delta (PKCdelta) causes a B-cell lymphoproliferative syndrome in humans.
        Blood. 2013; 121: 3117-3125
        • Oliveira J.B.
        • Bidere N.
        • Niemela J.E.
        • et al.
        NRAS mutation causes a human autoimmune lymphoproliferative syndrome.
        Proc Natl Acad Sci U S A. 2007; 104: 8953-8958
        • Niemela J.E.
        • Lu L.
        • Fleisher T.A.
        • et al.
        Somatic KRAS mutations associated with a human nonmalignant syndrome of autoimmunity and abnormal leukocyte homeostasis.
        Blood. 2011; 117: 2883-2886
        • Takagi M.
        • Shinoda K.
        • Piao J.
        • et al.
        Autoimmune lymphoproliferative syndrome-like disease with somatic KRAS mutation.
        Blood. 2011; 117: 2887-2890
        • Arason G.J.
        • Jorgensen G.H.
        • Ludviksson B.R.
        Primary immunodeficiency and autoimmunity: lessons from human diseases.
        Scand J Immunol. 2010; 71: 317-328
        • Pickering M.C.
        • Botto M.
        • Taylor P.R.
        • et al.
        Systemic lupus erythematosus, complement deficiency, and apoptosis.
        Adv Immunol. 2000; 76: 227-324
        • Arason G.J.
        • Geirsson A.J.
        • Kolka R.
        • et al.
        Deficiency of complement-dependent prevention of immune precipitation in systemic sclerosis.
        Ann Rheum Dis. 2002; 61: 257-260
        • Arason G.J.
        • Steinsson K.
        • Kolka R.
        • et al.
        Patients with systemic lupus erythematosus are deficient in complement-dependent prevention of immune precipitation.
        Rheumatology. 2004; 43: 783-789
        • Bussone G.
        • Mouthon L.
        Autoimmune manifestations in primary immune deficiencies.
        Autoimmun Rev. 2009; 8: 332-336
        • Etzioni A.
        Immune deficiency and autoimmunity.
        Autoimmun Rev. 2003; 2: 364-369
        • Kang E.M.
        • Marciano B.E.
        • DeRavin S.
        • et al.
        Chronic granulomatous disease: overview and hematopoietic stem cell transplantation.
        J Allergy Clin Immunol. 2011; 127 ([quiz: 1327–8]): 1319-1326
        • Kelkka T.
        • Kienhofer D.
        • Hoffmann M.
        • et al.
        Reactive oxygen species deficiency induces autoimmunity with type 1 interferon signature.
        Antioxid Redox Signal. 2014; 21: 2231-2245
        • Toro-Dominguez D.
        • Carmona-Saez P.
        • Alarcon-Riquelme M.E.
        Shared signatures between rheumatoid arthritis, systemic lupus erythematosus and Sjogren's syndrome uncovered through gene expression meta-analysis.
        Arthritis Res Ther. 2014; 16: 489
        • Kraaij M.D.
        • Savage N.D.
        • van der Kooij S.W.
        • et al.
        Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species.
        Proc Natl Acad Sci U S A. 2010; 107: 17686-17691
        • Sakaguchi S.
        • Sakaguchi N.
        • Asano M.
        • et al.
        Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases.
        J Immunol. 1995; 155: 1151-1164
        • Fontenot J.D.
        • Gavin M.A.
        • Rudensky A.Y.
        Foxp3 programs the development and function of CD4+CD25+ regulatory T cells.
        Nat Immunol. 2003; 4: 330-336
        • Bennett C.L.
        • Christie J.
        • Ramsdell F.
        • et al.
        The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3.
        Nat Genet. 2001; 27: 20-21
        • Wildin R.S.
        • Ramsdell F.
        • Peake J.
        • et al.
        X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy.
        Nat Genet. 2001; 27: 18-20
        • Chatila T.A.
        • Blaeser F.
        • Ho N.
        • et al.
        JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic dysregulation syndrome.
        J Clin Invest. 2000; 106: R75-R81
        • Zhang L.
        • Zhao Y.
        The regulation of Foxp3 expression in regulatory CD4(+)CD25(+)T cells: multiple pathways on the road.
        J Cell Physiol. 2007; 211: 590-597
        • Caudy A.A.
        • Reddy S.T.
        • Chatila T.
        • et al.
        CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes.
        J Allergy Clin Immunol. 2007; 119: 482-487
        • Cohen A.C.
        • Nadeau K.C.
        • Tu W.
        • et al.
        Cutting edge: decreased accumulation and regulatory function of CD4+ CD25(high) T cells in human STAT5b deficiency.
        J Immunol. 2006; 177: 2770-2774
        • Lohr N.J.
        • Molleston J.P.
        • Strauss K.A.
        • et al.
        Human ITCH E3 ubiquitin ligase deficiency causes syndromic multisystem autoimmune disease.
        Am J Hum Genet. 2010; 86: 447-453
        • Venuprasad K.
        • Huang H.
        • Harada Y.
        • et al.
        The E3 ubiquitin ligase Itch regulates expression of transcription factor Foxp3 and airway inflammation by enhancing the function of transcription factor TIEG1.
        Nat Immunol. 2008; 9: 245-253
        • Sansom D.M.
        • Walker L.S.
        The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology.
        Immunol Rev. 2006; 212: 131-148
        • Waterhouse P.
        • Penninger J.M.
        • Timms E.
        • et al.
        Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4.
        Science. 1995; 270: 985-988
        • Tivol E.A.
        • Borriello F.
        • Schweitzer A.N.
        • et al.
        Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4.
        Immunity. 1995; 3: 541-547
        • Schubert D.
        • Bode C.
        • Kenefeck R.
        • et al.
        Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations.
        Nat Med. 2014; 20: 1410-1416
        • Kuehn H.S.
        • Ouyang W.
        • Lo B.
        • et al.
        Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4.
        Science. 2014; 345: 1623-1627
        • Charbonnier L.M.
        • Janssen E.
        • Chou J.
        • et al.
        Regulatory T-cell deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like disorder caused by loss-of-function mutations in LRBA.
        J Allergy Clin Immunol. 2015; 135: 217-227.e219
        • Lopez-Herrera G.
        • Tampella G.
        • Pan-Hammarstrom Q.
        • et al.
        Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity.
        Am J Hum Genet. 2012; 90: 986-1001
        • Serwas N.K.
        • Kansu A.
        • Santos-Valente E.
        • et al.
        Atypical manifestation of LRBA deficiency with predominant IBD-like phenotype.
        Inflamm Bowel Dis. 2015; 21: 40-47
        • Alangari A.
        • Alsultan A.
        • Adly N.
        • et al.
        LPS-responsive beige-like anchor (LRBA) gene mutation in a family with inflammatory bowel disease and combined immunodeficiency.
        J Allergy Clin Immunol. 2012; 130: 481-488.e2
        • Fevang B.
        • Yndestad A.
        • Sandberg W.J.
        • et al.
        Low numbers of regulatory T cells in common variable immunodeficiency: association with chronic inflammation in vivo.
        Clin Exp Immunol. 2007; 147: 521-525
        • Yu G.P.
        • Chiang D.
        • Song S.J.
        • et al.
        Regulatory T cell dysfunction in subjects with common variable immunodeficiency complicated by autoimmune disease.
        Clin Immunol. 2009; 131: 240-253
        • Arumugakani G.
        • Wood P.M.
        • Carter C.R.
        Frequency of Treg cells is reduced in CVID patients with autoimmunity and splenomegaly and is associated with expanded CD21lo B lymphocytes.
        J Clin Immunol. 2010; 30: 292-300
        • Genre J.
        • Errante P.R.
        • Kokron C.M.
        • et al.
        Reduced frequency of CD4(+)CD25(HIGH)FOXP3(+) cells and diminished FOXP3 expression in patients with common variable immunodeficiency: a link to autoimmunity?.
        Clin Immunol. 2009; 132: 215-221
        • Maillard M.H.
        • Cotta-de-Almeida V.
        • Takeshima F.
        • et al.
        The Wiskott-Aldrich syndrome protein is required for the function of CD4(+)CD25(+)Foxp3(+) regulatory T cells.
        J Exp Med. 2007; 204: 381-391
        • Milner J.D.
        • Vogel T.P.
        • Forbes L.
        • et al.
        Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations.
        Blood. 2015; 125: 591-599
        • Janssen E.
        • Morbach H.
        • Ullas S.
        • et al.
        Dedicator of cytokinesis 8-deficient patients have a breakdown in peripheral B-cell tolerance and defective regulatory T cells.
        J Allergy Clin Immunol. 2014; 134: 1365-1374
        • Sullivan K.E.
        • McDonald-McGinn D.
        • Zackai E.H.
        CD4(+) CD25(+) T-cell production in healthy humans and in patients with thymic hypoplasia.
        Clin Diagn Lab Immunol. 2002; 9: 1129-1131
        • Goodnow C.C.
        • Sprent J.
        • Fazekas de St Groth B.
        • et al.
        Cellular and genetic mechanisms of self tolerance and autoimmunity.
        Nature. 2005; 435: 590-597
        • Ng Y.S.
        • Wardemann H.
        • Chelnis J.
        • et al.
        Bruton's tyrosine kinase is essential for human B cell tolerance.
        J Exp Med. 2004; 200: 927-934
        • Chew G.Y.
        • Sinha U.
        • Gatenby P.A.
        • et al.
        Autoimmunity in primary antibody deficiency is associated with protein tyrosine phosphatase nonreceptor type 22 (PTPN22).
        J Allergy Clin Immunol. 2013; 131 (1135.e1): 1130-1135
        • Isnardi I.
        • Ng Y.S.
        • Srdanovic I.
        • et al.
        IRAK-4- and MyD88-dependent pathways are essential for the removal of developing autoreactive B cells in humans.
        Immunity. 2008; 29: 746-757
        • Castigli E.
        • Wilson S.A.
        • Garibyan L.
        • et al.
        TACI is mutant in common variable immunodeficiency and IgA deficiency.
        Nat Genet. 2005; 37: 829-834
        • Salzer U.
        • Chapel H.M.
        • Webster A.D.
        • et al.
        Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans.
        Nat Genet. 2005; 37: 820-828
        • Lee J.J.
        • Ozcan E.
        • Rauter I.
        • et al.
        Transmembrane activator and calcium-modulator and cyclophilin ligand interactor mutations in common variable immunodeficiency.
        Curr Opin Allergy Clin Immunol. 2008; 8: 520-526
        • Romberg N.
        • Chamberlain N.
        • Saadoun D.
        • et al.
        CVID-associated TACI mutations affect autoreactive B cell selection and activation.
        J Clin Invest. 2013; 123: 4283-4293
        • Notarangelo L.D.
        • Lanzi G.
        • Peron S.
        • et al.
        Defects of class-switch recombination.
        J Allergy Clin Immunol. 2006; 117: 855-864
        • Quartier P.
        • Bustamante J.
        • Sanal O.
        • et al.
        Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to Activation-Induced Cytidine Deaminase deficiency.
        Clin Immunol. 2004; 110: 22-29
        • Revy P.
        • Muto T.
        • Levy Y.
        • et al.
        Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2).
        Cell. 2000; 102: 565-575
        • Meyers G.
        • Ng Y.S.
        • Bannock J.M.
        • et al.
        Activation-induced cytidine deaminase (AID) is required for B-cell tolerance in humans.
        Proc Natl Acad Sci U S A. 2011; 108: 11554-11559
        • Jesus A.A.
        • Duarte A.J.
        • Oliveira J.B.
        Autoimmunity in hyper-IgM syndrome.
        J Clin Immunol. 2008; 28: S62-S66
        • Herve M.
        • Isnardi I.
        • Ng Y.S.
        • et al.
        CD40 ligand and MHC class II expression are essential for human peripheral B cell tolerance.
        J Exp Med. 2007; 204: 1583-1593
        • Kumanogoh A.
        • Wang X.
        • Lee I.
        • et al.
        Increased T cell autoreactivity in the absence of CD40-CD40 ligand interactions: a role of CD40 in regulatory T cell development.
        J Immunol. 2001; 166: 353-360
        • Stohl W.
        • Xu D.
        • Kim K.S.
        • et al.
        BAFF overexpression and accelerated glomerular disease in mice with an incomplete genetic predisposition to systemic lupus erythematosus.
        Arthritis Rheum. 2005; 52: 2080-2091
        • Thien M.
        • Phan T.G.
        • Gardam S.
        • et al.
        Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches.
        Immunity. 2004; 20: 785-798
        • Lesley R.
        • Xu Y.
        • Kalled S.L.
        • et al.
        Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF.
        Immunity. 2004; 20: 441-453
        • Knight A.K.
        • Radigan L.
        • Marron T.
        • et al.
        High serum levels of BAFF, APRIL, and TACI in common variable immunodeficiency.
        Clin Immunol. 2007; 124: 182-189
        • Mackay F.
        • Sierro F.
        • Grey S.T.
        • et al.
        The BAFF/APRIL system: an important player in systemic rheumatic diseases.
        Curr Dir Autoimmun. 2005; 8: 243-265
        • Foerster C.
        • Voelxen N.
        • Rakhmanov M.
        • et al.
        B cell receptor-mediated calcium signaling is impaired in B lymphocytes of type Ia patients with common variable immunodeficiency.
        J Immunol. 2010; 184: 7305-7313
        • Rakhmanov M.
        • Keller B.
        • Gutenberger S.
        • et al.
        Circulating CD21low B cells in common variable immunodeficiency resemble tissue homing, innate-like B cells.
        Proc Natl Acad Sci U S A. 2009; 106: 13451-13456
        • Isnardi I.
        • Ng Y.S.
        • Menard L.
        • et al.
        Complement receptor 2/CD21- human naive B cells contain mostly autoreactive unresponsive clones.
        Blood. 2010; 115: 5026-5036
        • Wehr C.
        • Kivioja T.
        • Schmitt C.
        • et al.
        The EUROclass trial: defining subgroups in common variable immunodeficiency.
        Blood. 2008; 111: 77-85
        • Chandrakasan S.
        • Filipovich A.H.
        Hemophagocytic lymphohistiocytosis: advances in pathophysiology, diagnosis, and treatment.
        J Pediatr. 2013; 163: 1253-1259
        • Terrell C.E.
        • Jordan M.B.
        Perforin deficiency impairs a critical immunoregulatory loop involving murine CD8(+) T cells and dendritic cells.
        Blood. 2013; 121: 5184-5191
        • Jessen B.
        • Kogl T.
        • Sepulveda F.E.
        • et al.
        Graded defects in cytotoxicity determine severity of hemophagocytic lymphohistiocytosis in humans and mice.
        Front Immunol. 2013; 4: 448
        • Henter J.I.
        • Elinder G.
        • Soder O.
        • et al.
        Hypercytokinemia in familial hemophagocytic lymphohistiocytosis.
        Blood. 1991; 78: 2918-2922
        • Henter J.I.
        • Horne A.
        • Arico M.
        • et al.
        HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis.
        Pediatr Blood Cancer. 2007; 48: 124-131
        • Parvaneh N.
        • Filipovich A.H.
        • Borkhardt A.
        Primary immunodeficiencies predisposed to Epstein-Barr virus-driven haematological diseases.
        Br J Haematol. 2013; 162: 573-586
        • Cunningham-Rundles C.
        • Bodian C.
        Common variable immunodeficiency: clinical and immunological features of 248 patients.
        Clin Immunol. 1999; 92: 34-48
        • Resnick E.S.
        • Moshier E.L.
        • Godbold J.H.
        • et al.
        Morbidity and mortality in common variable immune deficiency over 4 decades.
        Blood. 2012; 119: 1650-1657
        • Chapel H.
        • Lucas M.
        • Lee M.
        • et al.
        Common variable immunodeficiency disorders: division into distinct clinical phenotypes.
        Blood. 2008; 112: 277-286
        • Bates C.A.
        • Ellison M.C.
        • Lynch D.A.
        • et al.
        Granulomatous-lymphocytic lung disease shortens survival in common variable immunodeficiency.
        J Allergy Clin Immunol. 2004; 114: 415-421
        • Lee A.H.
        • Levinson A.I.
        • Schumacher Jr., H.R.
        Hypogammaglobulinemia and rheumatic disease.
        Semin Arthritis Rheum. 1993; 22: 252-264
        • Swierkot J.
        • Lewandowicz-Uszynska A.
        • Chlebicki A.
        • et al.
        Rheumatoid arthritis in a patient with common variable immunodeficiency: difficulty in diagnosis and therapy.
        Clin Rheumatol. 2006; 25: 92-94
        • Resnick E.S.
        • Cunningham-Rundles C.
        The many faces of the clinical picture of common variable immune deficiency.
        Curr Opin Allergy Clin Immunol. 2012; 12: 595-601
        • Jin R.
        • Kaneko H.
        • Suzuki H.
        • et al.
        Age-related changes in BAFF and APRIL profiles and upregulation of BAFF and APRIL expression in patients with primary antibody deficiency.
        Int J Mol Med. 2008; 21: 233-238
        • Wehr C.
        • Eibel H.
        • Masilamani M.
        • et al.
        A new CD21low B cell population in the peripheral blood of patients with SLE.
        Clin Immunol. 2004; 113: 161-171
        • Park J.
        • Munagala I.
        • Xu H.
        • et al.
        Interferon signature in the blood in inflammatory common variable immune deficiency.
        PLoS One. 2013; 8: e74893
        • Gathmann B.
        • Mahlaoui N.
        • CEREDIH
        • et al.
        Clinical picture and treatment of 2212 patients with common variable immunodeficiency.
        J Allergy Clin Immunol. 2014; 134: 116-126
        • Luzi G.
        • Zullo A.
        • Iebba F.
        • et al.
        Duodenal pathology and clinical-immunological implications in common variable immunodeficiency patients.
        Am J Gastroenterol. 2003; 98: 118-121
        • Malamut G.
        • Verkarre V.
        • Suarez F.
        • et al.
        The enteropathy associated with common variable immunodeficiency: the delineated frontiers with celiac disease.
        Am J Gastroenterol. 2010; 105: 2262-2275
        • Teahon K.
        • Webster A.D.
        • Price A.B.
        • et al.
        Studies on the enteropathy associated with primary hypogammaglobulinaemia.
        Gut. 1994; 35: 1244-1249
        • Biagi F.
        • Bianchi P.I.
        • Zilli A.
        • et al.
        The significance of duodenal mucosal atrophy in patients with common variable immunodeficiency: a clinical and histopathologic study.
        Am J Clin Pathol. 2012; 138: 185-189
        • Venhoff N.
        • Emmerich F.
        • Neagu M.
        • et al.
        The role of HLA DQ2 and DQ8 in dissecting celiac-like disease in common variable immunodeficiency.
        J Clin Immunol. 2013; 33: 909-916
        • Shulzhenko N.
        • Morgun A.
        • Hsiao W.
        • et al.
        Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut.
        Nat Med. 2011; 17: 1585-1593
        • Mannon P.J.
        • Fuss I.J.
        • Dill S.
        • et al.
        Excess IL-12 but not IL-23 accompanies the inflammatory bowel disease associated with common variable immunodeficiency.
        Gastroenterology. 2006; 131: 748-756
        • Lo B.
        • Zhang K.
        • Lu W.
        • et al.
        Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy.
        Science. 2015; 359: 436-440
        • Orange J.S.
        • Glessner J.T.
        • Resnick E.
        • et al.
        Genome-wide association identifies diverse causes of common variable immunodeficiency.
        J Allergy Clin Immunol. 2011; 127: 1360-1367.e6
        • Shi X.Z.
        • Sarna S.K.
        Gene therapy of Cav1.2 channel with VIP and VIP receptor agonists and antagonists: a novel approach to designing promotility and antimotility agents.
        Am J Physiol Gastrointest Liver Physiol. 2008; 295: G187-G196
        • Maglione P.J.
        • Ko H.M.
        • Beasley M.B.
        • et al.
        Tertiary lymphoid neogenesis is a component of pulmonary lymphoid hyperplasia in patients with common variable immunodeficiency.
        J Allergy Clin Immunol. 2014; 133: 535-542
        • Randall T.D.
        Bronchus-associated lymphoid tissue (BALT) structure and function.
        Adv Immunol. 2010; 107: 187-241
        • Baris S.
        • Schulze I.
        • Ozen A.
        • et al.
        Clinical heterogeneity of immunodysregulation, polyendocrinopathy, enteropathy, X-linked: pulmonary involvement as a non-classical disease manifestation.
        J Clin Immunol. 2014; 34: 601-606
        • Saunders B.M.
        • Britton W.J.
        Life and death in the granuloma: immunopathology of tuberculosis.
        Immunol Cell Biol. 2007; 85: 103-111
        • Mullighan C.G.
        • Fanning G.C.
        • Chapel H.M.
        • et al.
        TNF and lymphotoxin-alpha polymorphisms associated with common variable immunodeficiency: role in the pathogenesis of granulomatous disease.
        J Immunol. 1997; 159: 6236-6241
        • Wheat W.H.
        • Cool C.D.
        • Morimoto Y.
        • et al.
        Possible role of human herpesvirus 8 in the lymphoproliferative disorders in common variable immunodeficiency.
        J Exp Med. 2005; 202: 479-484
        • Prasse A.
        • Kayser G.
        • Warnatz K.
        Common variable immunodeficiency-associated granulomatous and interstitial lung disease.
        Curr Opin Pulm Med. 2013; 19: 503-509
        • Fuss I.J.
        • Friend J.
        • Yang Z.
        • et al.
        Nodular regenerative hyperplasia in common variable immunodeficiency.
        J Clin Immunol. 2013; 33: 748-758
        • Ward C.
        • Lucas M.
        • Piris J.
        • et al.
        Abnormal liver function in common variable immunodeficiency disorders due to nodular regenerative hyperplasia.
        Clin Exp Immunol. 2008; 153: 331-337
        • Hartleb M.
        • Gutkowski K.
        • Milkiewicz P.
        Nodular regenerative hyperplasia: evolving concepts on underdiagnosed cause of portal hypertension.
        World J Gastroenterol. 2011; 17: 1400-1409
        • Malamut G.
        • Ziol M.
        • Suarez F.
        • et al.
        Nodular regenerative hyperplasia: the main liver disease in patients with primary hypogammaglobulinemia and hepatic abnormalities.
        J Hepatol. 2008; 48: 74-82
        • Wanless I.R.
        Micronodular transformation (nodular regenerative hyperplasia) of the liver: a report of 64 cases among 2,500 autopsies and a new classification of benign hepatocellular nodules.
        Hepatology. 1990; 11: 787-797
        • Nakanuma Y.
        Nodular regenerative hyperplasia of the liver: retrospective survey in autopsy series.
        J Clin Gastroenterol. 1990; 12: 460-465
        • Reshamwala P.A.
        • Kleiner D.E.
        • Heller T.
        Nodular regenerative hyperplasia: not all nodules are created equal.
        Hepatology. 2006; 44: 7-14
        • Ziol M.
        • Poirel H.
        • Kountchou G.N.
        • et al.
        Intrasinusoidal cytotoxic CD8+ T cells in nodular regenerative hyperplasia of the liver.
        Hum Pathol. 2004; 35: 1241-1251
        • Kiyuna A.
        • Sunagawa T.
        • Hokama A.
        • et al.
        Nodular regenerative hyperplasia of the liver and Castleman's disease: potential role of interleukin-6.
        Dig Dis Sci. 2005; 50: 314-316
        • Klein R.
        • Goller S.
        • Bianchi L.
        Nodular regenerative hyperplasia (NRH) of the liver–a manifestation of 'organ-specific antiphospholipid syndrome'?.
        Immunobiology. 2003; 207: 51-57
        • Barzaghi F.
        • Passerini L.
        • Bacchetta R.
        Immune dysregulation, polyendocrinopathy, enteropathy, x-linked syndrome: a paradigm of immunodeficiency with autoimmunity.
        Front Immunol. 2012; 3: 211
        • Kluger N.
        • Ranki A.
        • Krohn K.
        APECED: is this a model for failure of T cell and B cell tolerance?.
        Front Immunol. 2012; 3: 232
        • Tison B.E.
        • Nicholas S.K.
        • Abramson S.L.
        • et al.
        Autoimmunity in a cohort of 130 pediatric patients with partial DiGeorge syndrome.
        J Allergy Clin Immunol. 2011; 128: 1115-1117.e1–3
        • McLean-Tooke A.
        • Barge D.
        • Spickett G.P.
        • et al.
        Immunologic defects in 22q11.2 deletion syndrome.
        J Allergy Clin Immunol. 2008; 122 (367.e1–4): 362-367
        • Diehl L.
        • Den Boer A.T.
        • van der Voort E.I.
        • et al.
        The role of CD40 in peripheral T cell tolerance and immunity.
        J Mol Med (Berlin, Germany). 2000; 78: 363-371
        • Imai K.
        • Slupphaug G.
        • Lee W.I.
        • et al.
        Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination.
        Nat Immunol. 2003; 4: 1023-1028
        • Hanson E.P.
        • Monaco-Shawver L.
        • Solt L.A.
        • et al.
        Hypomorphic nuclear factor-kappaB essential modulator mutation database and reconstitution system identifies phenotypic and immunologic diversity.
        J Allergy Clin Immunol. 2008; 122: 1169-1177.e16
        • Yoshioka T.
        • Nishikomori R.
        • Hara J.
        • et al.
        Autosomal dominant anhidrotic ectodermal dysplasia with immunodeficiency caused by a novel NFKBIA mutation, p.Ser36Tyr, presents with mild ectodermal dysplasia and non-infectious systemic inflammation.
        J Clin Immunol. 2013; 33: 1165-1174
        • Hernandez-Trujillo V.P.
        • Scalchunes C.
        • Cunningham-Rundles C.
        • et al.
        Autoimmunity and inflammation in X-linked agammaglobulinemia.
        J Clin Immunol. 2014; 34: 627-632
        • Cleland S.Y.
        • Siegel R.M.
        Wiskott-Aldrich syndrome at the nexus of autoimmune and primary immunodeficiency diseases.
        FEBS Lett. 2011; 585: 3710-3714
        • Abbott J.K.
        • Gelfand E.W.
        Common Variable Immunodeficiency: Diagnosis, Management, and Treatment.
        Immunol Allergy Clin North Am. 2015; (in press)