Advertisement
Review Article| Volume 39, ISSUE 3, P377-389, August 2019

Bacteria in Asthma Pathogenesis

  • Michael Insel
    Affiliations
    Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of Arizona Health Sciences, University of Arizona College of Medicine – Tucson, 1501 North Campbell Avenue, PO Box 245017, Tucson, AZ 85724, USA
    Search for articles by this author
  • Monica Kraft
    Correspondence
    Corresponding author.
    Affiliations
    Department of Medicine, College of Medicine Tucson, Asthma and Airway Disease Research Center, University of Arizona Health Sciences, University of Arizona College of Medicine – Tucson, 1501 North Campbell Avenue, PO Box 245017, Tucson, AZ 85724, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Immunology and Allergy Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Shapiro G.G.
        • Eggleston P.A.
        • Pierson W.E.
        • et al.
        Double-blind study of the effectiveness of a broad-spectrum antibiotic in status asthmaticus.
        Pediatrics. 1974; 53: 867-872
        • Sabato A.R.
        • Martin A.J.
        • Marmion B.P.
        • et al.
        Mycoplasma pneumoniae: acute illness, antibiotics, and subsequent pulmonary function.
        Arch Dis Child. 1984; 59: 1034-1037
        • Seggev J.S.
        • Lis I.
        • Siman-Tov R.
        • et al.
        Mycoplasma pneumoniae is a frequent cause of exacerbation of bronchial asthma in adults.
        Ann Allergy. 1986; 57: 263-265
        • Biscardi S.
        • Lorrot M.
        • Marc E.
        • et al.
        Mycoplasma pneumoniae and asthma in children.
        Clin Infect Dis. 2004; 38: 1341-1346
        • Kassisse E.
        • Garcia H.
        • Prada L.
        • et al.
        Prevalence of Mycoplasma pneumoniae infection in pediatric patients with acute asthma exacerbation.
        Arch Argent Pediatr. 2018; 116: 179-185
        • Martin R.J.
        • Kraft M.
        • Chu H.W.
        • et al.
        A link between chronic asthma and chronic infection.
        J Allergy Clin Immunol. 2001; 107: 595-601
        • Kraft M.
        • Cassell G.H.
        • Henson J.E.
        • et al.
        Detection of Mycoplasma pneumoniae in the airways of adults with chronic asthma.
        Am J Respir Crit Care Med. 1998; 158: 998-1001
        • Wood P.R.
        • Hill V.L.
        • Burks M.L.
        • et al.
        Mycoplasma pneumoniae in children with acute and refractory asthma.
        Ann Allergy Asthma Immunol. 2013; 110: 334.e1
        • Shin J.E.
        • Cheon B.R.
        • Shim J.W.
        • et al.
        Increased risk of refractory Mycoplasma pneumoniae pneumonia in children with atopic sensitization and asthma.
        Korean J Pediatr. 2014; 57: 271-277
        • Waites K.B.
        • Talkington D.F.
        Mycoplasma pneumoniae and its role as a human pathogen.
        Clin Microbiol Rev. 2004; 17 (table of contents): 728
        • Razin S.
        Mycoplasmas.
        in: Baron S. Medical microbiology. The University of Texas Medical Branch at Galveston, Galveston (TX)1996: NBK7637 ([bookaccession])
        • Seto S.
        • Kenri T.
        • Tomiyama T.
        • et al.
        Involvement of P1 adhesin in gliding motility of Mycoplasma pneumoniae as revealed by the inhibitory effects of antibody under optimized gliding conditions.
        J Bacteriol. 2005; 187: 1875-1877
        • Shimizu T.
        • Kida Y.
        • Kuwano K.
        A dipalmitoylated lipoprotein from Mycoplasma pneumoniae activates NF-kappa B through TLR1, TLR2, and TLR6.
        J Immunol. 2005; 175: 4641-4646
        • Shimizu T.
        • Kida Y.
        • Kuwano K.
        Cytoadherence-dependent induction of inflammatory responses by Mycoplasma pneumoniae.
        Immunology. 2011; 133: 51-61
        • Chmura K.
        • Bai X.
        • Nakamura M.
        • et al.
        Induction of IL-8 by Mycoplasma pneumoniae membrane in BEAS-2B cells.
        Am J Physiol Lung Cell Mol Physiol. 2008; 295: 220
        • Kannan T.R.
        • Baseman J.B.
        ADP-ribosylating and vacuolating cytotoxin of Mycoplasma pneumoniae represents unique virulence determinant among bacterial pathogens.
        Proc Natl Acad Sci U S A. 2006; 103: 6724-6729
        • Fan Q.
        • Gu T.
        • Li P.
        • et al.
        Roles of T-cell immunoglobulin and mucin domain genes and toll-like receptors in wheezy children with Mycoplasma pneumoniae pneumonia.
        Heart Lung Circ. 2016; 25: 1226-1231
        • Medjo B.
        • Atanaskovic-Markovic M.
        • Nikolic D.
        • et al.
        Increased serum interleukin-10 but not interleukin-4 level in children with Mycoplasma pneumoniae pneumonia.
        J Trop Pediatr. 2017; 63: 294-300
        • Esposito S.
        • Droghetti R.
        • Bosis S.
        • et al.
        Cytokine secretion in children with acute mycoplasma pneumoniae infection and wheeze.
        Pediatr Pulmonol. 2002; 34: 122-127
        • Koh Y.Y.
        • Park Y.
        • Lee H.J.
        • et al.
        Levels of interleukin-2, interferon-gamma, and interleukin-4 in bronchoalveolar lavage fluid from patients with mycoplasma pneumonia: implication of tendency toward increased immunoglobulin E production.
        Pediatrics. 2001; 107: E39
        • Chung H.L.
        • Kim S.G.
        • Shin I.H.
        The relationship between serum endothelin (ET)-1 and wheezing status in the children with mycoplasma pneumoniae pneumonia.
        Pediatr Allergy Immunol. 2006; 17: 285-290
        • Choi I.S.
        • Byeon J.H.
        • Yoo Y.
        • et al.
        Increased serum interleukin-5 and vascular endothelial growth factor in children with acute mycoplasma pneumonia and wheeze.
        Pediatr Pulmonol. 2009; 44: 423-428
        • Ye Q.
        • Mao J.H.
        • Shu Q.
        • et al.
        Mycoplasma pneumoniae induces allergy by producing P1-specific immunoglobulin E.
        Ann Allergy Asthma Immunol. 2018; 121: 90-97
        • Chung H.L.
        • Shin J.Y.
        • Ju M.
        • et al.
        Decreased interleukin-18 response in asthmatic children with severe mycoplasma pneumoniae pneumonia.
        Cytokine. 2011; 54: 218-221
        • Hoek K.L.
        • Duffy L.B.
        • Cassell G.H.
        • et al.
        A role for the Mycoplasma pneumoniae adhesin P1 in interleukin (IL)-4 synthesis and release from rodent mast cells.
        Microb Pathog. 2005; 39: 149-158
        • Maselli D.J.
        • Medina J.L.
        • Brooks E.G.
        • et al.
        The immunopathologic effects of Mycoplasma pneumoniae and community-acquired respiratory distress syndrome toxin. A primate model.
        Am J Respir Cell Mol Biol. 2018; 58: 253-260
        • Kim J.H.
        • Cho T.S.
        • Moon J.H.
        • et al.
        Serial changes in serum eosinophil-associated mediators between atopic and non-atopic children after Mycoplasma pneumoniae pneumonia.
        Allergy Asthma Immunol Res. 2014; 6: 428-433
        • Medina J.L.
        • Brooks E.G.
        • Chaparro A.
        • et al.
        Mycoplasma pneumoniae CARDS toxin elicits a functional IgE response in balb/c mice.
        PLoS One. 2017; 12: e0172447
        • Jeong Y.C.
        • Yeo M.S.
        • Kim J.H.
        • et al.
        Mycoplasma pneumoniae infection affects the serum levels of vascular endothelial growth factor and interleukin-5 in atopic children.
        Allergy Asthma Immunol Res. 2012; 4: 92-97
        • Ye Q.
        • Xu X.J.
        • Shao W.X.
        • et al.
        Mycoplasma pneumoniae infection in children is a risk factor for developing allergic diseases.
        ScientificWorldJournal. 2014; 2014: 986527
        • Shao L.
        • Cong Z.
        • Li X.
        • et al.
        Changes in levels of IL-9, IL-17, IFN-gamma, dendritic cell numbers and TLR expression in peripheral blood in asthmatic children with mycoplasma pneumoniae infection.
        Int J Clin Exp Pathol. 2015; 8: 5263-5272
        • Wu Q.
        • Martin R.J.
        • Lafasto S.
        • et al.
        Toll-like receptor 2 down-regulation in established mouse allergic lungs contributes to decreased mycoplasma clearance.
        Am J Respir Crit Care Med. 2008; 177: 720-729
        • Gally F.
        • Di Y.P.
        • Smith S.K.
        • et al.
        SPLUNC1 promotes lung innate defense against Mycoplasma pneumoniae infection in mice.
        Am J Pathol. 2011; 178: 2159-2167
        • Yeh J.J.
        • Wang Y.C.
        • Hsu W.H.
        • et al.
        Incident asthma and Mycoplasma pneumoniae: a nationwide cohort study.
        J Allergy Clin Immunol. 2016; 137: 1023.e6
        • Chu H.W.
        • Honour J.M.
        • Rawlinson C.A.
        • et al.
        Effects of respiratory Mycoplasma pneumoniae infection on allergen-induced bronchial hyperresponsiveness and lung inflammation in mice.
        Infect Immun. 2003; 71: 1520-1526
        • Medina J.L.
        • Coalson J.J.
        • Brooks E.G.
        • et al.
        Mycoplasma pneumoniae CARDS toxin exacerbates ovalbumin-induced asthma-like inflammation in BALB/c mice.
        PLoS One. 2014; 9: e102613
        • Ledford J.G.
        • Mukherjee S.
        • Kislan M.M.
        • et al.
        Surfactant protein-A suppresses eosinophil-mediated killing of Mycoplasma pneumoniae in allergic lungs.
        PLoS One. 2012; 7: e32436
        • Hsia B.J.
        • Ledford J.G.
        • Potts-Kant E.N.
        • et al.
        Mast cell TNF receptors regulate responses to Mycoplasma pneumoniae in surfactant protein A (SP-A)-/- mice.
        J Allergy Clin Immunol. 2012; 130: 14.e2
        • Wang Y.
        • Voelker D.R.
        • Lugogo N.L.
        • et al.
        Surfactant protein A is defective in abrogating inflammation in asthma.
        Am J Physiol Lung Cell Mol Physiol. 2011; 301: 598
        • Ledford J.G.
        • Voelker D.R.
        • Addison K.J.
        • et al.
        Genetic variation in SP-A2 leads to differential binding to Mycoplasma pneumoniae membranes and regulation of host responses.
        J Immunol. 2015; 194: 6123-6132
        • Padron-Morales J.
        • Sanz C.
        • Davila I.
        • et al.
        Polymorphisms of the IL12B, IL1B, and TNFA genes and susceptibility to asthma.
        J Investig Allergol Clin Immunol. 2013; 23: 487-494
        • Wu Q.
        • Martin R.J.
        • Rino J.G.
        • et al.
        A deficient TLR2 signaling promotes airway mucin production in Mycoplasma pneumoniae-infected allergic mice.
        Am J Physiol Lung Cell Mol Physiol. 2007; 292: 1064
        • Wu Q.
        • Martin R.J.
        • LaFasto S.
        • et al.
        A low dose of Mycoplasma pneumoniae infection enhances an established allergic inflammation in mice: the role of the prostaglandin E2 pathway.
        Clin Exp Allergy. 2009; 39: 1754-1763
        • Kurai D.
        • Nakagaki K.
        • Wada H.
        • et al.
        Mycoplasma pneumoniae extract induces an IL-17-associated inflammatory reaction in murine lung: implication for mycoplasmal pneumonia.
        Inflammation. 2013; 36: 285-293
        • Elwell C.
        • Mirrashidi K.
        • Engel J.
        Chlamydia cell biology and pathogenesis.
        Nat Rev Microbiol. 2016; 14: 385-400
        • Da Costa C.U.
        • Wantia N.
        • Kirschning C.J.
        • et al.
        Heat shock protein 60 from Chlamydia pneumoniae elicits an unusual set of inflammatory responses via toll-like receptor 2 and 4 in vivo.
        Eur J Immunol. 2004; 34: 2874-2884
        • Hahn D.L.
        • Dodge R.W.
        • Golubjatnikov R.
        Association of Chlamydia pneumoniae (strain TWAR) infection with wheezing, asthmatic bronchitis, and adult-onset asthma.
        JAMA. 1991; 266: 225-230
        • Hahn D.L.
        • Peeling R.W.
        Airflow limitation, asthma, and Chlamydia pneumoniae-specific heat shock protein 60.
        Ann Allergy Asthma Immunol. 2008; 101: 614-618
        • Hahn D.L.
        • Schure A.
        • Patel K.
        • et al.
        Chlamydia pneumoniae-specific IgE is prevalent in asthma and is associated with disease severity.
        PLoS One. 2012; 7: e35945
        • Patel K.K.
        • Vicencio A.G.
        • Du Z.
        • et al.
        Infectious Chlamydia pneumoniae is associated with elevated interleukin-8 and airway neutrophilia in children with refractory asthma.
        Pediatr Infect Dis J. 2010; 29: 1093-1098
        • Eitel J.
        • Meixenberger K.
        • van Laak C.
        • et al.
        Rac1 regulates the NLRP3 inflammasome which mediates IL-1beta production in Chlamydophila pneumoniae infected human mononuclear cells.
        PLoS One. 2012; 7: e30379
        • Horvat J.C.
        • Starkey M.R.
        • Kim R.Y.
        • et al.
        Chlamydial respiratory infection during allergen sensitization drives neutrophilic allergic airways disease.
        J Immunol. 2010; 184: 4159-4169
        • Horvat J.C.
        • Starkey M.R.
        • Kim R.Y.
        • et al.
        Early-life chlamydial lung infection enhances allergic airways disease through age-dependent differences in immunopathology.
        J Allergy Clin Immunol. 2010; 125: 625.e6
        • Starkey M.R.
        • Kim R.Y.
        • Beckett E.L.
        • et al.
        Chlamydia muridarum lung infection in infants alters hematopoietic cells to promote allergic airway disease in mice.
        PLoS One. 2012; 7: e42588
        • Patel K.K.
        • Webley W.C.
        Evidence of infectious asthma phenotype: chlamydia-induced allergy and pathogen-specific IgE in a neonatal mouse model.
        PLoS One. 2013; 8: e83453
        • Pasternack R.
        • Huhtala H.
        • Karjalainen J.
        Chlamydophila (chlamydia) pneumoniae serology and asthma in adults: a longitudinal analysis.
        J Allergy Clin Immunol. 2005; 116: 1123-1128
        • ten Brinke A.
        • van Dissel J.T.
        • Sterk P.J.
        • et al.
        Persistent airflow limitation in adult-onset nonatopic asthma is associated with serologic evidence of Chlamydia pneumoniae infection.
        J Allergy Clin Immunol. 2001; 107: 449-454
        • Droemann D.
        • Rupp J.
        • Goldmann T.
        • et al.
        Disparate innate immune responses to persistent and acute Chlamydia pneumoniae infection in chronic obstructive pulmonary disease.
        Am J Respir Crit Care Med. 2007; 175: 791-797
        • Chen C.Z.
        • Yang B.C.
        • Lin T.M.
        • et al.
        Chronic and repeated Chlamydophila pneumoniae lung infection can result in increasing IL-4 gene expression and thickness of airway subepithelial basement membrane in mice.
        J Formos Med Assoc. 2009; 108: 45-52
        • Park C.S.
        • Lee Y.S.
        • Kwon H.S.
        • et al.
        Chlamydophila pneumoniae inhibits corticosteroid-induced suppression of metalloproteinase-9 and tissue inhibitor metalloproteinase-1 secretion by human peripheral blood mononuclear cells.
        J Med Microbiol. 2012; 61: 705-711
        • Poikonen K.
        • Lajunen T.
        • Silvennoinen-Kassinen S.
        • et al.
        Effects of CD14, TLR2, TLR4, LPB, and IL-6 gene polymorphisms on Chlamydia pneumoniae growth in human macrophages in vitro.
        Scand J Immunol. 2009; 70: 34-39
        • Netea M.G.
        • Kullberg B.J.
        • Galama J.M.
        • et al.
        Non-LPS components of Chlamydia pneumoniae stimulate cytokine production through toll-like receptor 2-dependent pathways.
        Eur J Immunol. 2002; 32: 1188-1195
        • Joyee A.G.
        • Yang X.
        Plasmacytoid dendritic cells mediate the regulation of inflammatory type T cell response for optimal immunity against respiratory Chlamydia pneumoniae infection.
        PLoS One. 2013; 8: e83463
        • Webley W.C.
        • Tilahun Y.
        • Lay K.
        • et al.
        Occurrence of Chlamydia trachomatis and chlamydia pneumoniae in paediatric respiratory infections.
        Eur Respir J. 2009; 33: 360-367
        • Kaiko G.E.
        • Phipps S.
        • Hickey D.K.
        • et al.
        Chlamydia muridarum infection subverts dendritic cell function to promote Th2 immunity and airways hyperreactivity.
        J Immunol. 2008; 180: 2225-2232
        • Mosolygo T.
        • Spengler G.
        • Endresz V.
        • et al.
        IL-17E production is elevated in the lungs of balb/c mice in the later stages of Chlamydia muridarum infection and re-infection.
        In Vivo. 2013; 27: 787-792
        • Zhang X.
        • Angkasekwinai P.
        • Dong C.
        • et al.
        Structure and function of interleukin-17 family cytokines.
        Protein Cell. 2011; 2: 26-40
        • Wood L.G.
        • Simpson J.L.
        • Hansbro P.M.
        • et al.
        Potentially pathogenic bacteria cultured from the sputum of stable asthmatics are associated with increased 8-isoprostane and airway neutrophilia.
        Free Radic Res. 2010; 44: 146-154
        • Essilfie A.T.
        • Simpson J.L.
        • Horvat J.C.
        • et al.
        Haemophilus influenzae infection drives IL-17-mediated neutrophilic allergic airways disease.
        PLoS Pathog. 2011; 7: e1002244
        • Zhao S.
        • Jiang Y.
        • Yang X.
        • et al.
        Lipopolysaccharides promote a shift from Th2-derived airway eosinophilic inflammation to Th17-derived neutrophilic inflammation in an ovalbumin-sensitized murine asthma model.
        J Asthma. 2017; 54: 447-455
        • Essilfie A.T.
        • Simpson J.L.
        • Dunkley M.L.
        • et al.
        Combined haemophilus influenzae respiratory infection and allergic airways disease drives chronic infection and features of neutrophilic asthma.
        Thorax. 2012; 67: 588-599
        • Clementsen P.
        • Milman N.
        • Kilian M.
        • et al.
        Endotoxin from haemophilus influenzae enhances IgE-mediated and non-immunological histamine release.
        Allergy. 1990; 45: 10-17
        • Song W.J.
        • Sintobin I.
        • Sohn K.H.
        • et al.
        Staphylococcal enterotoxin IgE sensitization in late-onset severe eosinophilic asthma in the elderly.
        Clin Exp Allergy. 2016; 46: 411-421
        • Bachert C.
        • van Steen K.
        • Zhang N.
        • et al.
        Specific IgE against Staphylococcus aureus enterotoxins: an independent risk factor for asthma.
        J Allergy Clin Immunol. 2012; 130: 81.e8
        • Kowalski M.L.
        • Cieslak M.
        • Perez-Novo C.A.
        • et al.
        Clinical and immunological determinants of severe/refractory asthma (SRA): association with staphylococcal superantigen-specific IgE antibodies.
        Allergy. 2011; 66: 32-38
        • Nagasaki T.
        • Matsumoto H.
        • Oguma T.
        • et al.
        Sensitization to staphylococcus aureus enterotoxins in smokers with asthma.
        Ann Allergy Asthma Immunol. 2017; 119: 414.e2
        • Prince L.R.
        • Graham K.J.
        • Connolly J.
        • et al.
        Staphylococcus aureus induces eosinophil cell death mediated by alpha-hemolysin.
        PLoS One. 2012; 7: e31506
        • Liang Z.
        • Zhang Q.
        • Thomas C.M.
        • et al.
        Impaired macrophage phagocytosis of bacteria in severe asthma.
        Respir Res. 2014; 15: 72
        • Roy M.G.
        • Livraghi-Butrico A.
        • Fletcher A.A.
        • et al.
        Muc5b is required for airway defence.
        Nature. 2014; 505: 412-416
        • Kostadima E.
        • Tsiodras S.
        • Alexopoulos E.I.
        • et al.
        Clarithromycin reduces the severity of bronchial hyperresponsiveness in patients with asthma.
        Eur Respir J. 2004; 23: 714-717
        • Brusselle G.G.
        • Vanderstichele C.
        • Jordens P.
        • et al.
        Azithromycin for prevention of exacerbations in severe asthma (AZISAST): a multicentre randomised double-blind placebo-controlled trial.
        Thorax. 2013; 68: 322-329
        • Nelson H.S.
        • Hamilos D.L.
        • Corsello P.R.
        • et al.
        A double-blind study of troleandomycin and methylprednisolone in asthmatic subjects who require daily corticosteroids.
        Am Rev Respir Dis. 1993; 147: 398-404
        • Gibson P.G.
        • Yang I.A.
        • Upham J.W.
        • et al.
        Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma (AMAZES): a randomised, double-blind, placebo-controlled trial.
        Lancet. 2017; 390: 659-668
        • Dzhindzhikhashvili M.S.
        • Joks R.
        • Smith-Norowitz T.
        • et al.
        Doxycycline suppresses chlamydia pneumoniae-mediated increases in ongoing immunoglobulin E and interleukin-4 responses by peripheral blood mononuclear cells of patients with allergic asthma.
        J Antimicrob Chemother. 2013; 68: 2363-2368
        • Mertens T.C.
        • Hiemstra P.S.
        • Taube C.
        Azithromycin differentially affects the IL-13-induced expression profile in human bronchial epithelial cells.
        Pulm Pharmacol Ther. 2016; 39: 14-20
        • An T.J.
        • Rhee C.K.
        • Kim J.H.
        • et al.
        Effects of macrolide and corticosteroid in neutrophilic asthma mouse model.
        Tuberc Respir Dis (Seoul). 2018; 81: 80-87
        • Yamaya M.
        • Nomura K.
        • Arakawa K.
        • et al.
        Clarithromycin decreases rhinovirus replication and cytokine production in nasal epithelial cells from subjects with bronchial asthma: effects on IL-6, IL-8 and IL-33.
        Arch Pharm Res. 2017;
        • Slater M.
        • Rivett D.W.
        • Williams L.
        • et al.
        The impact of azithromycin therapy on the airway microbiota in asthma.
        Thorax. 2014; 69: 673-674
        • Strachan D.P.
        Hay fever, hygiene, and household size.
        BMJ. 1989; 299: 1259-1260
        • Ege M.J.
        • Mayer M.
        • Normand A.C.
        • et al.
        Exposure to environmental microorganisms and childhood asthma.
        N Engl J Med. 2011; 364: 701-709
        • Durack J.
        • Huang Y.J.
        • Nariya S.
        • et al.
        Bacterial biogeography of adult airways in atopic asthma.
        Microbiome. 2018; 6: 3
        • Fujimura K.E.
        • Sitarik A.R.
        • Havstad S.
        • et al.
        Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation.
        Nat Med. 2016; 22: 1187-1191
        • Bisgaard H.
        • Hermansen M.N.
        • Buchvald F.
        • et al.
        Childhood asthma after bacterial colonization of the airway in neonates.
        N Engl J Med. 2007; 357: 1487-1495
        • Folsgaard N.V.
        • Schjorring S.
        • Chawes B.L.
        • et al.
        Pathogenic bacteria colonizing the airways in asymptomatic neonates stimulates topical inflammatory mediator release.
        Am J Respir Crit Care Med. 2013; 187: 589-595
        • Stokholm J.
        • Sevelsted A.
        • Bonnelykke K.
        • et al.
        Maternal propensity for infections and risk of childhood asthma: a registry-based cohort study.
        Lancet Respir Med. 2014; 2: 631-637
        • Arrieta M.C.
        • Stiemsma L.T.
        • Dimitriu P.A.
        • et al.
        Early infancy microbial and metabolic alterations affect risk of childhood asthma.
        Sci Transl Med. 2015; 7: 307ra152
        • Yu J.
        • Jang S.O.
        • Kim B.J.
        • et al.
        The effects of lactobacillus rhamnosus on the prevention of asthma in a murine model.
        Allergy Asthma Immunol Res. 2010; 2: 199-205
        • Marri P.R.
        • Stern D.A.
        • Wright A.L.
        • et al.
        Asthma-associated differences in microbial composition of induced sputum.
        J Allergy Clin Immunol. 2013; 131: 3
        • Taylor S.L.
        • Leong L.E.X.
        • Choo J.M.
        • et al.
        Inflammatory phenotypes in patients with severe asthma are associated with distinct airway microbiology.
        J Allergy Clin Immunol. 2018; 141: 103.e15
        • Sverrild A.
        • Kiilerich P.
        • Brejnrod A.
        • et al.
        Eosinophilic airway inflammation in asthmatic patients is associated with an altered airway microbiome.
        J Allergy Clin Immunol. 2017; 140: 417.e11
        • Furukawa T.
        • Sakagami T.
        • Koya T.
        • et al.
        Characteristics of eosinophilic and non-eosinophilic asthma during treatment with inhaled corticosteroids.
        J Asthma. 2015; 52: 417-422
        • Huang Y.J.
        • Nariya S.
        • Harris J.M.
        • et al.
        The airway microbiome in patients with severe asthma: associations with disease features and severity.
        J Allergy Clin Immunol. 2015; 136: 874-884
        • Durack J.
        • Lynch S.V.
        • Nariya S.
        • et al.
        Features of the bronchial bacterial microbiome associated with atopy, asthma, and responsiveness to inhaled corticosteroid treatment.
        J Allergy Clin Immunol. 2017; 140: 63-75
        • Goleva E.
        • Jackson L.P.
        • Harris J.K.
        • et al.
        The effects of airway microbiome on corticosteroid responsiveness in asthma.
        Am J Respir Crit Care Med. 2013; 188: 1193-1201