Advertisement

Gestational Development of the Human Immune System

  • Laura Jardine
    Correspondence
    Corresponding author. Newcastle University Medical School, 3rd floor William Leech Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, United Kingdom.
    Affiliations
    Biosciences Institute, Newcastle University, Faculty of Medical Sciences, Newcastle Upon Tyne NE2 4HH, United Kingdom

    Haematology Department, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
    Search for articles by this author
  • Ina Schim van der Loeff
    Affiliations
    Translational and Clinical Research Institute, Newcastle University, Faculty of Medical Sciences, Newcastle Upon Tyne NE2 4HH, United Kingdom
    Search for articles by this author
  • Iram J. Haq
    Affiliations
    Translational and Clinical Research Institute, Newcastle University, Faculty of Medical Sciences, Newcastle Upon Tyne NE2 4HH, United Kingdom

    Department of Paediatric Respiratory Medicine, Great North Children’s Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
    Search for articles by this author
  • Thomas D.R. Sproat
    Affiliations
    Neonatal Unit, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Richardson Road, Newcastle Upon Tyne NE1 4LP, United Kingdom
    Search for articles by this author
Published:October 27, 2022DOI:https://doi.org/10.1016/j.iac.2022.05.009

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Immunology and Allergy Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Popescu D.M.
        • Botting R.A.
        • Stephenson E.
        • et al.
        Decoding human fetal liver hematopoiesis.
        Nature. 2019; 574: 365-371
        • Copley M.R.
        • Eaves C.J.
        Developmental changes in hematopoietic stem cell properties.
        Exp Mol Med. 2013; 45: e55
        • Ivanovs A.
        • Rybtsov S.
        • Ng E.S.
        • et al.
        Human hematopoietic stem cell development: from the embryo to the dish.
        Development. 2017; 144: 2323-2337
        • Dzierzak E.
        • Medvinsky A.
        The discovery of a source of adult hematopoietic cells in the embryo.
        Development. 2008; : 135 2343-2346
        • O’Byrne S.
        • Elliott N.
        • Rice S.
        • et al.
        Discovery of a CD10-negative B-progenitor in human fetal life identifies unique ontogeny-related developmental programs.
        Blood. 2019; 134: 1059-1071
        • Park J.E.
        • Botting R.A.
        • Domínguez Conde C.
        • et al.
        A cell atlas of human thymic development defines T cell repertoire formation.
        Science. 2020; 367
        • Charbord P.
        • Tavian M.
        • Humeau L.
        • et al.
        Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment.
        Blood. 1996; 87: 4109-4119
        • Jardine L.
        • Webb S.
        • Goh I.
        • et al.
        Blood and immune development in human fetal bone marrow and Down syndrome.
        Nature. 2021; 598: 327-331
        • Mende N.
        • Bastos H.P.
        • Santoro A.
        • et al.
        Unique molecular and functional features of extramedullary hematopoietic stem and progenitor cell reservoirs in humans.
        Blood. 2022; https://doi.org/10.1182/blood.2021013450
        • Suo C.
        • Dann E.
        • Goh I.
        • et al.
        Mapping the developing human immune system across organs.
        Science. 2022; 376https://doi.org/10.1126/science.abo0510
        • He P.
        • Lim K.
        • Sun D.
        • et al.
        A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates.
        bioRxiv. 2022; : 474933https://doi.org/10.1101/2022.01.11.474933
        • Schafflick D.
        • Wolbert J.
        • Heming M.
        • et al.
        Single-cell profiling of CNS border compartment leukocytes reveals that B cells and their progenitors reside in non-diseased meninges.
        Nat Neurosci. 2021; : 24 1225-1234
        • Park J.-E.
        • Jardine L.
        • Gottgens B.
        • et al.
        Prenatal development of human immunity.
        Science. 2020; 368: 600-603
        • Forestier F.
        • Daffos F.
        • Catherine N.
        • et al.
        Developmental hematopoiesis in normal human fetal blood.
        Blood. 1991; 77: 2360-2363
        • Christensen R.D.
        • Jensen J.
        • Maheshwari A.
        • et al.
        Reference ranges for blood concentrations of eosinophils and monocytes during the neonatal period defined from over 63 000 records in a multihospital health-care system.
        J Perinatology. 2010; 30: 540-545
        • Olin A.
        • Henckel E.
        • Chen Y.
        • et al.
        Stereotypic Immune System Development in Newborn Children.
        Cell. 2018; 174: 1277-1292.e14
        • Paolicelli R.C.
        • Bolasco G.
        • Pagani F.
        • et al.
        Synaptic pruning by microglia is necessary for normal brain development.
        Science. 2011; 333: 1456-1458
        • Fantin A.
        • Vieira J.M.
        • Gestri G.
        • et al.
        Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction.
        Blood. 2010; 116: 829-840
        • Li W.
        • Guo R.
        • Song Y.
        • et al.
        Erythroblastic Island Macrophages Shape Normal Erythropoiesis and Drive Associated Disorders in Erythroid Hematopoietic Diseases.
        Front Cell Dev Biol. 2021; 0
        • Theret M.
        • Mounier R.
        • Rossi F.
        The origins and non-canonical functions of macrophages in development and regeneration.
        Development. 2019; 146
        • Ginhoux F.
        • Guilliams M.
        Tissue-Resident Macrophage Ontogeny and Homeostasis.
        Immunity. 2016; 44: 439-449
        • Alsinet C.
        • Nascimento Primo M.
        • Lorenzi V.
        • et al.
        Robust temporal map of human in vitro myelopoiesis using single-cell genomics.
        Nature Communications. 2022; 13https://doi.org/10.1038/s41467-022-30557-4
        • Krystel-Whittemore M.
        • Dileepan K.N.
        • Wood J.G.
        Mast Cell: A Multi-Functional Master Cell.
        Front Immunol. 2015; 6: 620
        • Li Z.
        • Liu S.
        • Xu J.
        • et al.
        Adult Connective Tissue-Resident Mast Cells Originate from Late Erythro-Myeloid Progenitors.
        Immunity. 2018; 49: 640-653.e5
        • Gentek R.
        • Ghigo C.
        • Hoeffel G.
        • et al.
        Hemogenic Endothelial Fate Mapping Reveals Dual Developmental Origin of Mast Cells.
        Immunity. 2018; 48: 1160-1171.e5
        • Vivier E.
        • Artis D.
        • Colonna M.
        • et al.
        Innate Lymphoid Cells: 10 Years On.
        Cell. 2018; 174: 1054-1066
        • Bando J.K.
        • Liang H.-E.
        • Locksley R.M.
        Identification and distribution of developing innate lymphoid cells in the fetal mouse intestine.
        Nat Immunol. 2015; 16: 153-160
        • Elmentaite R.
        • Kumasaka N.
        • King H.W.
        • et al.
        Cells of the human intestinal tract mapped across space and time.
        Nature. 2021; 597: 250-255
        • Lim A.I.
        • Li Y.
        • Lopez-Lastra S.
        • et al.
        Systemic Human ILC Precursors Provide a Substrate for Tissue ILC Differentiation.
        Cell. 2017; 168: 1086-1100.e10
        • Gasteiger G.
        • Fan X.
        • Dikiy S.
        • et al.
        Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs.
        Science. 2015; 350: 981-985
        • Mebius R.E.
        • Rennert P.
        • Weissman I.L.
        Developing Lymph Nodes Collect CD4 CD3 − LTβ Cells That Can Differentiate to APC, NK Cells, and Follicular Cells but Not T or B Cells.
        Immunity. 1997; : 7 493-504
        • Aparicio-Domingo P.
        • Romera-Hernandez M.
        • Karrich J.J.
        • et al.
        Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage.
        J Exp Med. 2015; 212: 1783-1791
        • von Moltke J.
        • Ji M.
        • Liang H.-E.
        • et al.
        Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit.
        Nature. 2016; 529: 221-225
        • Monticelli L.A.
        • Sonnenberg G.F.
        • Abt M.C.
        • et al.
        Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus.
        Nat Immunol. 2011; 12: 1045-1054
        • Patel A.A.
        • Yona S.
        Inherited and Environmental Factors Influence Human Monocyte Heterogeneity.
        Front Immunol. 2019; 10: 2581
        • Reynolds G.
        • Vegh P.
        • Fletcher J.
        • et al.
        Developmental cell programs are co-opted in inflammatory skin disease.
        Science. 2021; 371
        • Ziegler-Heitbrock L.
        Monocyte subsets in man and other species.
        Cell Immunol. 2014; 289: 135-139
        • Strunk T.
        • Temming P.
        • Gembruch U.
        • et al.
        Differential maturation of the innate immune response in human fetuses.
        Pediatr Res. 2004; 56: 219-226
        • Gomez J.C.
        • Doerschuk C.M.
        The role of CD18 in the production and release of neutrophils from the bone marrow.
        Lab Invest. 2010; 90: 599-610
        • Tedder T.F.
        • Steeber D.A.
        • Chen A.
        • et al.
        The selecting: vascular adhesion molecules.
        The FASEB J. 1995; 9: 866-873
        • Angelo L.S.
        • Bimler L.H.
        • Nikzad R.
        • et al.
        CXCR6+ NK Cells in Human Fetal Liver and Spleen Possess Unique Phenotypic and Functional Capabilities.
        Front Immunol. 2019; 0
        • Reynolds G.
        • Haniffa M.
        Human and Mouse Mononuclear Phagocyte Networks: A Tale of Two Species?.
        Front Immunol. 2015; 6: 330
        • McGovern N.
        • Shin A.
        • Low G.
        • et al.
        Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2.
        Nature. 2017; 546: 662-666
        • Rechavi E.
        • Lev A.
        • Lee Y.N.
        • et al.
        Timely and spatially regulated maturation of B and T cell repertoire during human fetal development.
        Sci Transl Med. 2015; 7: 276ra25
        • Rastogi D.
        • Wang C.
        • Mao X.
        • et al.
        Antigen-specific immune responses to influenza vaccine in utero.
        J Clin Invest. 2007; 117: 1637-1646
        • King C.L.
        • Malhotra I.
        • Mungai P.
        • et al.
        B cell sensitization to helminthic infection develops in utero in humans.
        J Immunol. 1998; 160: 3578-3584
        • Marchant A.
        • Appay V.
        • Van Der Sande M.
        • et al.
        Mature CD8(+) T lymphocyte response to viral infection during fetal life.
        J Clin Invest. 2003; 111: 1747-1755
        • Rayfield L.S.
        • Brent L.
        • Rodeck C.H.
        Development of cell-mediated lympholysis in human foetal blood lymphocytes.
        Clin Exp Immunol. 1980; 42: 561-570
        • Michaëlsson J.
        • Mold J.E.
        • McCune J.M.
        • et al.
        Regulation of T Cell Responses in the Developing Human Fetus.
        The J Immunol. 2006; 176: 5741-5748
        • Mold J.E.
        • Michaëlsson J.
        • Burt T.D.
        • et al.
        Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero.
        Science. 2008; 322: 1562-1565
        • Lee Y.J.
        • Jeon Y.K.
        • Kang B.H.
        • et al.
        Generation of PLZF+ CD4+ T cells via MHC class II-dependent thymocyte-thymocyte interaction is a physiological process in humans.
        J Exp Med. 2010; 207: 237-246
        • Collins C.
        • Sharpe E.
        • Silber A.
        • et al.
        Congenital Athymia: Genetic Etiologies, Clinical Manifestations, Diagnosis, and Treatment.
        J Clin Immunol. 2021; 41: 881-895
        • Mayassi T.
        • Barreiro L.B.
        • Rossjohn J.
        • et al.
        A multilayered immune system through the lens of unconventional T cells.
        Nature. 2021; 595: 501-510
        • Alonzo E.S.
        • Sant’Angelo D.B.
        Development of PLZF-expressing innate T cells.
        Curr Opin Immunol. 2011; 23: 220-227
        • Toulon A.
        • Breton L.
        • Taylor K.R.
        • et al.
        A role for human skin-resident T cells in wound healing.
        J Exp Med. 2009; 206: 743-750
        • Baumgarth N.
        The double life of a B-1 cell: self-reactivity selects for protective effector functions.
        Nat Rev Immunol. 2011; 11: 34-46
        • Hayakawa K.
        • Asano M.
        • Shinton S.A.
        • et al.
        Positive selection of natural autoreactive B cells.
        Science. 1999; 285: 113-116
        • Blanco E.
        • Pérez-Andrés M.
        • Arriba-Méndez S.
        • et al.
        Age-associated distribution of normal B-cell and plasma cell subsets in peripheral blood.
        J Allergy Clin Immunol. 2018; 141: 2208-2219.e16
        • Barzanji A.J.
        • Emery J.L.
        Germinal centers in the spleens of neonates and stillbirths.
        Early Hum Dev. 1978; 1: 363-369
        • Elmentaite R.
        • Ross A.D.B.
        • Roberts K.
        • et al.
        Single-Cell Sequencing of Developing Human Gut Reveals Transcriptional Links to Childhood Crohn’s Disease.
        Dev Cell. 2020; 55: 771-783.e5
        • Grassi R.
        • Farina R.
        • Floriani I.
        • et al.
        Assessment of fetal swallowing with gray-scale and color Doppler sonography.
        AJR Am J Roentgenol. 2005; 185: 1322-1327
        • Stras S.F.
        • Werner L.
        • Toothaker J.M.
        • et al.
        Maturation of the Human Intestinal Immune System Occurs Early in Fetal Development.
        Dev Cell. 2019; 51: 357-373.e5
        • Schreurs R.R.C.E.
        • Baumdick M.E.
        • Sagebiel A.F.
        • et al.
        Human Fetal TNF-α-Cytokine-Producing CD4 Effector Memory T Cells Promote Intestinal Development and Mediate Inflammation Early in Life.
        Immunity. 2019; 50: 462-476.e8
        • Li N.
        • van Unen V.
        • Abdelaal T.
        • et al.
        Memory CD4 T cells are generated in the human fetal intestine.
        Nat Immunol. 2019; 20: 301-312
        • Mishra A.
        • Lai G.C.
        • Yao L.J.
        • et al.
        Microbial exposure during early human development primes fetal immune cells.
        Cell. 2021; 184: 3394-3409.e20
        • Battersby C.
        • Santhalingam T.
        • Costeloe K.
        • et al.
        Incidence of neonatal necrotising enterocolitis in high-income countries: a systematic review.
        Arch Dis Child Fetal Neonatal Ed. 2018; 103: F182-F189
        • Bode L.
        Human Milk Oligosaccharides in the Prevention of Necrotizing Enterocolitis: A Journey From and Models to Mother-Infant Cohort Studies.
        Front Pediatr. 2018; 6: 385
        • Egozi A.
        • Olaloye O.
        • Werner L.
        • et al.
        Single cell atlas of the neonatal small intestine with necrotizing enterocolitis.
        bioRxiv. 2022; https://doi.org/10.1101/2022.03.01.482508
        • Corpeleijn W.E.
        • de Waard M.
        • Christmann V.
        • et al.
        Effect of Donor Milk on Severe Infections and Mortality in Very Low-Birth-Weight Infants: The Early Nutrition Study Randomized Clinical Trial.
        JAMA Pediatr. 2016; 170: 654-661
        • Stewart C.J.
        • Embleton N.D.
        • Marrs E.C.L.
        • et al.
        Temporal bacterial and metabolic development of the preterm gut reveals specific signatures in health and disease.
        Microbiome. 2016; 4: 67
        • Hackam D.J.
        • Sodhi C.P.
        Toll-Like Receptor-Mediated Intestinal Inflammatory Imbalance in the Pathogenesis of Necrotizing Enterocolitis.
        Cell Mol Gastroenterol Hepatol. 2018; 6: 229-238.e1
        • Warner B.B.
        • Deych E.
        • Zhou Y.
        • et al.
        Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants: a prospective case-control study.
        Lancet. 2016; 387: 1928-1936
        • Cacho N.T.
        • Lawrence R.M.
        Innate Immunity and Breast Milk.
        Front Immunol. 2017; 8
        • Stewart C.J.
        • Ajami N.J.
        • O’Brien J.L.
        • et al.
        Temporal development of the gut microbiome in early childhood from the TEDDY study.
        Nature. 2018; 562: 583-588
        • Masi A.C.
        • Embleton N.D.
        • Lamb C.A.
        • et al.
        Human milk oligosaccharide DSLNT and gut microbiome in preterm infants predicts necrotising enterocolitis.
        Gut. 2021; 70: 2273-2282
        • Henrick B.M.
        • Rodriguez L.
        • Lakshmikanth T.
        • et al.
        Bifidobacteria-mediated immune system imprinting early in life.
        bioRxiv. 2020; https://doi.org/10.1101/2020.10.24.353250
        • Lu P.
        • Yamaguchi Y.
        • Fulton W.B.
        • et al.
        Maternal aryl hydrocarbon receptor activation protects newborns against necrotizing enterocolitis.
        Nat Commun. 2021; 12: 1042
        • Warburton D.
        • El-Hashash A.
        • Carraro G.
        • et al.
        Lung organogenesis.
        Curr Top Dev Biol. 2010; 90: 73-158
        • Nikolić M.Z.
        • Sun D.
        • Rawlins E.L.
        Human lung development: recent progress and new challenges.
        Development. 2018; 145
        • Domingo-Gonzalez R.
        • Zanini F.
        • Che X.
        • et al.
        Diverse homeostatic and immunomodulatory roles of immune cells in the developing mouse lung at single cell resolution.
        Elife. 2020; 9
        • Madissoon E.
        • Oliver A.J.
        • Kleshchevnikov V.
        • et al.
        A spatial multi-omics atlas of the human lung reveals a novel immune cell survival niche.
        bioRxiv. 2021; 470108https://doi.org/10.1101/2021.11.26.470108
        • Cohen M.
        • Giladi A.
        • Gorki A.-D.
        • et al.
        Lung Single-Cell Signaling Interaction Map Reveals Basophil Role in Macrophage Imprinting.
        Cell. 2018; 175: 1031-1044.e18
        • Blackwell T.S.
        • Hipps A.N.
        • Yamamoto Y.
        • et al.
        NF-κB signaling in fetal lung macrophages disrupts airway morphogenesis.
        J Immunol. 2011; 187: 2740-2747
        • Guilliams M.
        • et al.
        Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF.
        J Exp Med. 2013; 210: 1977-1992
        • Kramer B.W.
        • Joshi S.N.
        • Moss T.J.M.
        • et al.
        Endotoxin-induced maturation of monocytes in preterm fetal sheep lung.
        Am J Physiol Lung Cell Mol Physiol. 2007; 293: L345-L353
        • Jackson C.M.
        • Mukherjee S.
        • Wilburn A.N.
        • et al.
        Pulmonary Consequences of Prenatal Inflammatory Exposures: Clinical Perspective and Review of Basic Immunological Mechanisms.
        Front Immunol. 2020; 11: 1285
        • Davidson L.M.
        • Berkelhamer S.K.
        Bronchopulmonary Dysplasia: Chronic Lung Disease of Infancy and Long-Term Pulmonary Outcomes.
        J Clin Med Res. 2017; 6
        • Torow N.
        • Marsland B.J.
        • Hornef M.W.
        • et al.
        Neonatal mucosal immunology.
        Mucosal Immunol. 2017; 10: 5-17
        • Saluzzo S.
        • Gorki A.-D.
        • Rana B.M.J.
        • et al.
        First-Breath-Induced Type 2 Pathways Shape the Lung Immune Environment.
        Cell Rep. 2017; 18: 1893-1905
        • de Kleer I.M.
        • Kool M.
        • de Bruijn M.J.W.
        • et al.
        Perinatal Activation of the Interleukin-33 Pathway Promotes Type 2 Immunity in the Developing Lung.
        Immunity. 2016; 45: 1285-1298
        • Tregoning J.S.
        • Yamaguchi Y.
        • Harker J.
        • et al.
        The role of T cells in the enhancement of respiratory syncytial virus infection severity during adult reinfection of neonatally sensitized mice.
        J Virol. 2008; 82: 4115-4124
        • Krishnamoorthy N.
        • Khare A.
        • Oriss T.B.
        • et al.
        Early infection with respiratory syncytial virus impairs regulatory T cell function and increases susceptibility to allergic asthma.
        Nat Med. 2012; 18: 1525-1530
        • Duncan C.J.A.
        • Mohamad S.M.B.
        • Young D.F.
        • et al.
        Human IFNAR2 deficiency: Lessons for antiviral immunity.
        Sci Transl Med. 2015; 7: 307ra154
        • Hambleton S.
        • Goodbourn S.
        • Young D.F.
        • et al.
        STAT2 deficiency and susceptibility to viral illness in humans.
        Proc Natl Acad Sci U S A. 2013; 110: 3053-3058
        • Yockey L.J.
        • Iwasaki A.
        Interferons and Proinflammatory Cytokines in Pregnancy and Fetal Development.
        Immunity. 2018; 49: 397-412
        • Crow Y.J.
        • Stetson D.B.
        The type I interferonopathies: 10 years on.
        Nat Rev Immunol. 2021; https://doi.org/10.1038/s41577-021-00633-9
        • Meuwissen M.E.C.
        • Schot R.
        • Buta S.
        • et al.
        Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome.
        J Exp Med. 2016; 213: 1163-1174
        • Gruber C.
        • Martin-Fernandez M.
        • Ailal F.
        • et al.
        Homozygous STAT2 gain-of-function mutation by loss of USP18 activity in a patient with type I interferonopathy.
        J Exp Med. 2020; 217
        • Duncan C.J.A.
        • Thompson B.J.
        • Chen R.
        • et al.
        Severe type I interferonopathy and unrestrained interferon signaling due to a homozygous germline mutation in.
        Sci Immunol. 2019; 4
        • Aicardi J.
        • Goutières F.
        A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis.
        Ann Neurol. 1984; 15: 49-54
        • Yockey L.J.
        • Jurado K.A.
        • Arora N.
        • et al.
        Type I interferons instigate fetal demise after Zika virus infection.
        Sci Immunol. 2018; 3
        • Harding A.T.
        • Goff M.A.
        • Froggatt H.M.
        • et al.
        GPER1 is required to protect fetal health from maternal inflammation.
        Science. 2021; 371: 271-276
        • Bennett C.L.
        • Christie J.
        • Ramsdell F.
        • et al.
        The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3.
        Nat Genet. 2001; : 27 20-21
        • Khattri R.
        • Cox T.
        • Yasayko S.-A.
        • et al.
        An essential role for Scurfin in CD4 CD25 T regulatory cells.
        Nat Immunol. 2003; : 4 337-342
        • Hori S.
        • Nomura T.
        • Sakaguchi S.
        Control of Regulatory T Cell Development by the Transcription Factor Foxp3.
        Science. 2003; : 299 1057-1061
        • Fontenot J.D.
        • Gavin M.A.
        • Rudensky A.Y.
        Foxp3 programs the development and function of CD4+CD25+ regulatory T cells.
        Nat Immunol. 2003; 4: 330-336
        • Barzaghi F.
        • Amaya Hernandez L.C.
        • Neven B.
        • et al.
        Long-term follow-up of IPEX syndrome patients after different therapeutic strategies: An international multicenter retrospective study.
        J Allergy Clin Immunol. 2018; 141: 1036-1049.e5
        • Xavier-da-Silva M.M.
        • Moreira-Filho C.C.
        • Suzuki E.
        • et al.
        Fetal-onset IPEX: report of two families and review of literature.
        Clin Immunol. 2015; 156: 131-140
        • Louie R.J.
        • Tan Q. K.-G.
        • Gilner J.B.
        • et al.
        Novel pathogenic variants in FOXP3 in fetuses with echogenic bowel and skin desquamation identified by ultrasound.
        Am J Med Genet A. 2017; 173: 1219-1225
        • Rae W.
        • Gao Y.
        • Bunyan D.
        • et al.
        A novel FOXP3 mutation causing fetal akinesia and recurrent male miscarriages.
        Clin Immunol. 2015; 161: 284-285
        • Reichert S.L.
        • McKay E.M.
        • Moldenhauer J.S.
        Identification of a novel nonsense mutation in theFOXP3gene in a fetus with hydrops-Expanding the phenotype of IPEX syndrome.
        Am J Med Genet A. 2016; : 170 226-232
        • Vasiljevic A.
        • Poreau B.
        • Bouvier R.
        • et al.
        Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome and recurrent intrauterine fetal death.
        Lancet. 2015; 385: 2120
        • Shehab O.
        • Tester D.J.
        • Ackerman N.C.
        • et al.
        Whole genome sequencing identifies etiology of recurrent male intrauterine fetal death.
        Prenat Diagn. 2017; 37: 1040-1045
        • Carneiro-Sampaio M.
        • Moreira-Filho C.A.
        • Bando S.Y.
        • et al.
        Front Pediatr. 2020; 0
        • Allenspach E.J.
        • Finn L.S.
        • Rendi M.H.
        • et al.
        Absence of functional fetal regulatory T cells in humans causes in utero organ-specific autoimmunity.
        J Allergy Clin Immunol. 2017; 140: 616-619.e7
        • de Saint-Basile G.
        • Le Deist F.
        • de Villartay J.P.
        • et al.
        Restricted heterogeneity of T lymphocytes in combined immunodeficiency with hypereosinophilia (Omenn’s syndrome).
        J Clin Invest. 1991; 87: 1352-1359
        • Villa A.
        • Notarangelo L.D.
        • Roifman C.M.
        Omenn syndrome: inflammation in leaky severe combined immunodeficiency.
        J Allergy Clin Immunol. 2008; 122: 1082-1086
        • Fugmann S.D.
        • Lee A.I.
        • Shockett P.E.
        • et al.
        The RAG proteins and V(D)J recombination: complexes, ends, and transposition.
        Annu Rev Immunol. 2000; 18: 495-527
        • Villa A.
        • Santagata S.
        • Bozzi F.
        • et al.
        Partial V(D)J recombination activity leads to Omenn syndrome.
        Cell. 1998; 93: 885-896
        • Schwarz K.
        • Gauss G.H.
        • Ludwig L.
        • et al.
        RAG mutations in human B cell-negative SCID.
        Science. 1996; 274: 97-99
        • Villa A.
        • Notarangelo L.D.
        RAG gene defects at the verge of immunodeficiency and immune dysregulation.
        Immunol Rev. 2019; 287: 73-90