Advertisement
Review Article| Volume 43, ISSUE 1, P43-52, February 2023

Advancing Exposomic Research in Prenatal Respiratory Disease Programming

Published:October 27, 2022DOI:https://doi.org/10.1016/j.iac.2022.07.008

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Immunology and Allergy Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Zazara D.E.
        • Wegmann M.
        • Giannou A.D.
        • et al.
        A prenatally disrupted airway epithelium orchestrates the fetal origin of asthma in mice.
        J Allergy Clin Immunol. 2020; 145: 1641-1654
        • Hui-Beckman J.
        • Kim B.E.
        • Leung D.Y.
        Origin of allergy from in utero exposures to the postnatal environment.
        Allergy Asthma Immunol Res. 2022; 14: 8-20
        • Guerra S.
        • Lombardi E.
        • Stern D.A.
        • et al.
        Fetal origins of asthma: A longitudinal study from birth to age 36 years.
        Am J Respir Crit Care Med. 2020; 202: 1646-1655
        • Walker M.L.
        • Holt K.E.
        • Anderson G.P.
        • et al.
        Elucidation of pathways driving asthma pathogenesis: development of a systems-level analytic strategy. Review.
        Front Immunol. 2014; 5: 447
        • Rosa M.J.
        • Lee A.
        • Wright R.
        Evidence establishing a link between prenatal and early-life stress and asthma development.
        Curr Opin Allergy Clin Immunol. 2018; 18: 148-158
        • Chiu Y.M.
        • Carroll K.N.
        • Coull B.A.
        • et al.
        Prenatal fine particulate matter, maternal micronutrient antioxidant intake, and early childhood repeated wheeze: Effect modification by race/ethnicity and sex.
        Antioxidants (Basel). 2022; : 11https://doi.org/10.3390/antiox11020366
        • Rosa M.J.
        • Tamayo-Ortiz M.
        • Mercado Garcia A.
        • et al.
        Prenatal lead exposure and childhood lung function: Influence of maternal cortisol and child sex.
        Environ Res. 2022; 205: 112447https://doi.org/10.1016/j.envres.2021.112447
        • Adgent M.A.
        • Carroll K.N.
        • Hazlehurst M.F.
        • et al.
        A combined cohort analysis of prenatal exposure to phthalate mixtures and childhood asthma.
        Environ Int. 2020; 143: 105970https://doi.org/10.1016/j.envint.2020.105970
        • Wright R.J.
        • Hsu H.L.
        • Chiu Y.M.
        • et al.
        Prenatal ambient ultrafine particle exposure and childhood asthma in the northeastern united states.
        Am J Respir Crit Care Med. 2021; 204: 788-796https://doi.org/10.1164/rccm.202010-3743OC
        • Warner J.O.
        • Warner J.A.
        The foetal origins of allergy and potential nutritional interventions to prevent disease.
        Nutrients. 2022; 12: 14https://doi.org/10.3390/nu14081590
        • Rosa M.J.
        • Hartman T.J.
        • Adgent M.
        • et al.
        Prenatal polyunsaturated fatty acids and child asthma: Effect modification by maternal asthma and child sex.
        J Allergy Clin Immunol Mar. 2020; 145 (e4): 800-807https://doi.org/10.1016/j.jaci.2019.10.039
        • Burbank A.J.
        • Sood A.K.
        • Kesic M.J.
        • et al.
        Environmental determinants of allergy and asthma in early life. Review.
        J Allergy Clin Immunol. 2017; 140: 1-12https://doi.org/10.1016/j.jaci.2017.05.010
        • Bunyavanich S.
        • Schadt E.E.
        Systems biology of asthma and allergic diseases: a multiscale approach. Review.
        J Allergy Clin Immunol. 2015; 135: 31-42https://doi.org/10.1016/j.jaci.2014.10.015
        • Levy B.D.
        • Noel P.J.
        • Freemer M.M.
        • et al.
        Future research directions in asthma. An NHLBI working group report.
        Am J Respir Crit Care Med. 2015; 192: 1366-1372https://doi.org/10.1164/rccm.201505-0963WS
        • Dennis K.K.
        • Marder E.
        • Balshaw D.M.
        • et al.
        Biomonitoring in the era of the exposome.
        Environ Health Perspect. 2017; 125: 502-510https://doi.org/10.1289/EHP474
        • Miller G.W.
        • Jones D.P.
        The nature of nurture: refining the definition of the exposome.
        Toxicol Sci. 2014; 137: 1-2https://doi.org/10.1093/toxsci/kft251
        • Vineis P.
        • Robinson O.
        • Chadeau-Hyam M.
        • et al.
        What is new in the exposome?.
        Environ Int. 2020; 143: 105887
        • Wright R.O.
        Environment, susceptibility windows, development, and child health. Review. Current opinion in pediatrics.
        . 2017; 29: 211-217
        • Wright R.O.
        • Teitelbaum S.
        • Thompson C.
        • et al.
        The child health exposure analysis resource as a vehicle to measure environment in the environmental influences on child health outcomes program.
        Curr Opin Pediatr. 2018; 30: 285-291
        • Robinson O.
        • Vrijheid M.
        The pregnancy exposome. research support, non-U.S. gov't review.
        Curr Environ Health Rep. 2015; 2: 204-213
        • Steckling N.
        • Gotti A.
        • Bose-O'Reilly S.
        • et al.
        Biomarkers of exposure in environment-wide association studies - Opportunities to decode the exposome using human biomonitoring data.
        Rev Environ Res. 2018; 164: 597-624
        • Chen M.
        • Guan Y.
        • Huang R.
        • et al.
        Associations between the maternal exposome and metabolome during pregnancy.
        Environ Health Perspect. 2022; 130: 37003
        • Wilson A.
        • Chiu Y.M.
        • Hsu H.L.
        • et al.
        Potential for bias when estimating critical windows for air pollution in children's health.
        Am J Epidemiol. 2017; 186: 1281-1289
        • Petrick L.M.
        • Arora M.
        • Niedzwiecki M.M.
        Minimally invasive biospecimen collection for exposome research in children's health.
        Curr Environ Health Rep. 2020; 7: 198-210
        • Just A.C.
        • Arfer K.B.
        • Rush J.
        • et al.
        Advancing methodologies for applying machine learning and evaluating spatiotemporal models of fine particulate matter (PM2.5) using satellite data over large regions.
        Atmos Environ (1994). 2020; 239https://doi.org/10.1016/j.atmosenv.2020.117649
        • Wilson A.
        • Chiu Y.M.
        • Hsu H.L.
        • et al.
        Bayesian distributed lag interaction models to identify perinatal windows of vulnerability in children's health.
        Biostatistics. 2017; https://doi.org/10.1093/biostatistics/kxx002
        • Wright R.J.
        • Brunst K.J.
        Programming of respiratory health in childhood: influence of outdoor air pollution. Research Support, N.I.H., Extramural Review.
        Curr Opin Pediatr. 2013; 25: 232-239
        • Hsu H.H.
        • Chiu Y.H.
        • Coull B.A.
        • et al.
        Prenatal particulate air pollution and asthma onset in urban children. Identifying sensitive windows and sex differences.
        Am J Respir Crit Care Med. 2015; 192: 1052-1059
        • Lee A.
        • Leon Hsu H.H.
        • Mathilda Chiu Y.H.
        • et al.
        Prenatal fine particulate exposure and early childhood asthma: Effect of maternal stress and fetal sex.
        J Allergy Clin Immunol. 2017; https://doi.org/10.1016/j.jaci.2017.07.017
        • Harouvi O.
        • Ben-Elia E.
        • Factor R.
        • et al.
        Noise estimation model development using high-resolution transportation and land use regression.
        J Expo Sci Environ Epidemiol. 2018; https://doi.org/10.1038/s41370-018-0035-z
        • James P.
        • Kioumourtzoglou M.A.
        • Hart J.E.
        • et al.
        Interrelationships between walkability, air pollution, greenness, and body mass index.
        Epidemiology. 2017; 28: 780-788
        • Hartley K.
        • Ryan P.H.
        • Gillespie G.L.
        • et al.
        Residential greenness, asthma, and lung function among children at high risk of allergic sensitization: a prospective cohort study.
        Environ Health. 2022; 21: 52
        • De Roos A.J.
        • Kenyon C.C.
        • Yen Y.T.
        • et al.
        Does living near trees and other vegetation affect the contemporaneous odds of asthma exacerbation among pediatric asthma patients?.
        J Urban Health. 2022; 99: 533-548
        • Goldstein J.A.
        • Gallagher K.
        • Beck C.
        • et al.
        Maternal-fetal inflammation in the placenta and the developmental origins of health and disease.
        Front Immunol. 2020; 11: 531543
        • Salas-Huetos A.
        • James E.R.
        • Aston K.I.
        • et al.
        The expression of miRNAs in human ovaries, oocytes, extracellular vesicles, and early embryos: A systematic review.
        Cells. 2019; 8https://doi.org/10.3390/cells8121564
        • Cushing L.
        • Jiang Z.
        • Kuang P.
        • et al.
        The roles of microRNAs and protein components of the microRNA pathway in lung development and diseases.
        Am J Respir Cell Mol Biol. 2015; 52: 397-408
        • Stadlbauer C.
        • Prohaska T.
        • Reiter C.
        • et al.
        Time-resolved monitoring of heavy-metal intoxication in single hair by laser ablation ICP-DRCMS.
        Anal Bioanal Chem. 2005; 383: 500-508
        • Rappaport S.M.
        • Barupal D.K.
        • Wishart D.
        • et al.
        The blood exposome and its role in discovering causes of disease. Research support, N.I.H., extramural support, 2014 research support, non-U.S. gov't.
        Environ Health Perspect. 2014; 122: 769-774
        • Vrijheid M.
        The exposome: a new paradigm to study the impact of environment on health.
        Thorax. 2014; 69: 876-878
        • Manrai A.K.
        • Cui Y.
        • Bushel P.R.
        • et al.
        Informatics and data analytics to support exposome-based discovery for public Health. Review.
        Annu Rev Public Health. 2017; 38: 279-294
        • Carlin D.J.
        • Rider C.V.
        • Woychik R.
        • et al.
        Unraveling the health effects of environmental mixtures: an NIEHS priority.
        Environ Health Perspect. 2013; 121: A6-A8
        • Taylor K.W.
        • Joubert B.R.
        • Braun J.M.
        • et al.
        Statistical approaches for assessing health effects of environmental chemical mixtures in epidemiology: Lessons from an innovative workshop. Research support, N.I.H., extramural.
        Environ Health Perspect. 2016; 124: A227-A229
        • Brunst K.J.
        • Sanchez Guerra M.
        • Gennings C.
        • et al.
        Maternal lifetime stress and prenatal psychological functioning and decreased placental mitochondrial DNA copy number in the PRISM study.
        Am J Epidemiol. 2017; 186: 1227-1236
        • Campbell R.K.
        • Curtin P.
        • Bosquet Enlow M.
        • et al.
        Disentangling associations among maternal lifetime and prenatal stress, psychological functioning during pregnancy, maternal race/ethnicity, and infant negative affectivity at age 6 months: A mixtures approach.
        Health Equity. 2020; 4: 489-499
        • Go Y.M.
        • Walker D.I.
        • Liang Y.
        • et al.
        Reference standardization for mass spectrometry and high-resolution metabolomics applications to exposome research. Evaluation research support, 2015 research support, N.I.H.
        Extramural Toxicol Sci. 2015; 148: 531-543
        • Jagani R.
        • Pulivarthi D.
        • Patel D.
        • et al.
        Validated single urinary assay designed for exposomic multi-class biomarkers of common environmental exposures.
        Anal Bioanal Chem. 2022; https://doi.org/10.1007/s00216-022-04159-4
        • Park Y.H.
        • Lee K.
        • Soltow Q.A.
        • et al.
        High-performance metabolic profiling of plasma from seven mammalian species for simultaneous environmental chemical surveillance and bioeffect monitoring. Research support, N.I.H., extramural.
        Toxicology. 2012; 295: 47-55
        • Go Y.M.
        • Jones D.P.
        Exposure memory and lung regeneration. Review.
        Ann Am Thorac Soc. 2016; 13: S452-S461
        • Petrick L.
        • Edmands W.
        • Schiffman C.
        • et al.
        An untargeted metabolomics method for archived newborn dried blood spots in epidemiologic studies.
        Metabolomics. 2017; 13https://doi.org/10.1007/s11306-016-1153-z
        • Barr D.B.
        • Kannan K.
        • Cui Y.
        • et al.
        The use of dried blood spots for characterizing children's exposure to organic environmental chemicals.
        Environ Res. 2021; 195: 110796
        • Yu M.
        • Dolios G.
        • Yong-Gonzalez V.
        • et al.
        Untargeted metabolomics profiling and hemoglobin normalization for archived newborn dried blood spots from a refrigerated biorepository.
        J Pharm Biomed Anal. 2020; 191: 113574